Смекни!
smekni.com

Термометры сопротивления и измерительные приборы к ним (стр. 4 из 5)

Чувствительный элемент платиновых термометров сопротивления типа ТСП-236 и ТСП-246, предназначенных для измерения температуры подшипников в интервале от 0 до 100°С (гр21), выполняют в виде спирали из платиновой проволоки диаметром 0,05 мм (ТСП-236) и 0,07 мм (ТСП-246). Платиновая спираль, изолированная с двух сторон фторопластовыми прокладками и приклееная к каркасу, помещена на дно медной гильзы. Медная гильза вставлена в защитную арматуру из стали 20, на конце которой укреплена малогабаритная головка. Дно медной гильзы припаяно к краям нижней части стальной арматуры. Медные выводы изолированы между собой и от стенки защитной арматуры фарфоровыми изоляторами. Свободные концы выводов подведены к зажимам контактной колодки, находящейся в корпусе головки. На объекте термометр сопротивления крепится с помощью накидной гайки и резиновых прокладок, обеспечивающих плотное прижатие дна медной гильзы к поверхности подшипника.

Показатель тепловой инерции εтермометров сопротивления в спокойном воздухе не превышает 7 с для ТСП-236 и 14 с – для ТСП-246. Термометры имеют класс точности 2. Монтажные длины термометров: у ТСП-236 от 20 до 200 мм; у ТСП-246 от 150 до 375 мм.

Чувствительный элемент медного термометра сопротивления типа ТСМ, предназначенного для измерения температуры в пределах от –50 до 180°С, показан на рис. 5.3. Он выполнен из изолированной медной проволоки диаметром 0,1 мм многослойной безындукционной намоткойна цилиндрическом каркасе из пластмассы или металла, герметизированной слоем лака. К концам обмотки припаяны выводы из медной проволоки. Собранный чувствительный элемент (длина равна 40 мм, диаметр 5 – 6 мм) вставляют в металлический чехол.

Рис. 5.3. Чувствительный элемент медного термометра сопротивления на каркасе из пластмассы.

На рис. 5.4 показан бескаркасный ЧЭ медного термометра сопротивления типа ТСМ, который выполнен из изолированной медной проволоки диаметром 0,08 мм безындукционной бескаркасной намоткой, покрытой фторопластовой пленкой. К концам обмотки припаяны выводыиз медной проволоки. С целью обеспечения вибростойкости чувствительный элемент вставляют в тонкостенный металлический защитный чехол, который засыпается керамическим порошком и герметизируется.

Рис. 5.4. Чувствительный элемент медного термометра сопротивления бескаркасный.


6. Измерительные приборы для работы с термометрами сопротивления

6.1. Автоматические компенсационные приборы для работы с малоомными термометрами сопротивления

При измерении малоомными термометрами с чувствительным элементом из платиновой проволоки диаметром 0,2 – 0,5 мм температур до 1000°С и выше приходится измерять сопротивления, соизмеримые с сопротивлением проводов, соединяющих термометр с прибором. Аналогичный случай имеет место и при измерении платиновым термометром низких температур в пределах от –200 до –260°С. В этом случае при температурах, равных –240, –250 и –260°С, платиновый термометр с номинальным значением сопротивления при 0°С R0 = 100 Ом имеет сопротивление соответственно 2,750; 1,093 и 0,510 Ом.

Автоматические приборы, необходимые для измерения температуры ниже –200°С и выше +650°С с помощью термометров сопротивления, изготавливаются только по специальным заказам.

Рассмотрим одну из схем автоматического компенсационного прибора, для измерения малых значений сопротивления (около 0,1 – 0,01 Ом). Измерительная схема этого прибора имеет высокую чувствительность, что позволяет обеспечить измерение низких температур в промышленных условиях с достаточной точностью, а также измерять температуру с использованием малоомных термометров сопротивления. Применение четырехпроводной схемы присоединения термометра позволило полностью исключить влияние на результаты измерения сопротивления проводов, соединяющих термометр с прибором.

Принципиальная схема автоматического компенсационного прибора переменного тока для измерения и записи низких температур (ниже 0°С) приведена на рис. 6.1. Здесь Rт – термометр сопротивления; Rн – резистор для подгонки начального значения шкалы; Rп.р – приведенное сопротивление реохорда (Rп.р = Rп.р Rп (Rп.р + Rп)-¹; Rб – балластный резистор для ограничения тока в цепи термометра; Tpт – трансформатор тока.

Питание измерительной схемы осуществляется напряжением переменного тока 6,3 В, частотой 50 Гц от вторичной обмотки силового трансформатора усилителя. Термометр сопротивления Rти балластный резистор включены в схему последовательно с первичной обмоткой трансформатора тока Tpт. Нагрузкой вторичной обмотки трансформатора тока являются резистор Rни приведенное сопротивление реохорда Rп.р. Рассматриваемая схема прибора позволяет измерять активное сопротивление термометра путем автоматической компенсации напряжения, возникающего на зажимах термометра bc, противоположным ему по фазе напряжением, снимаемым с резистора Rн, и сопротивления реохорда левее движка a.

Рис. 6.1. Принципиальная схема автоматического компенсационного прибора

Когда измеряемая температура, а следовательно, и сопротивлениетермометра соответствуют начальному значению шкалы прибора, движок реохорда aнаходится на схеме в крайнем правом положении. В этом случае напряжение на термометре компенсируется напряжением, снимаемым с резистора Rни реохорда Rп.р:

I1Rт.н= I2(Rн+Rп.р) (6.1.1)

где I1 – ток, протекающий через термометр сопротивления и первичную обмотку трансформатора тока; I2 – вторичный ток трансформатора; Rт.н – сопротивление термометра, соответствующее начальному значению шкалы прибора.

При нарушении равновесия напряжений вследствие уменьшения сопротивления термометра, а следовательно, и измеряемой температуры на вход усилителя подается напряжение небаланса. Это напряжение усиливается усилителем до значения, достаточного для приведения в действие реверсивного двигателя РД. Выходной вал двигателя, кинематически связанный с движком реохорда и указателем, передвигает их и приводит измерительную схему в равновесие. В этом случае положению равновесия схемы соответствует уравнение

I1Rт = I2 (Rн + mRп.р), (6.1.2)

где m = R'п.р/Rп.р (здесь R'п.р – сопротивление участка реохорда левее движка a).

Решая уравнение, приведенное выше относительно Rт, получаем:

Rт = kI (Rн + mRп.р) (6.1.3)

где kI = I2/I1 – коэффициент трансформации трансформатора тока.

В последнее уравнение, связывающее измеряемое значение сопротивления термометра с сопротивлением реохорда Rп.р и резистора Rн, входят не значения токов, а их отношения или коэффициент kI, который в достаточно широких пределах изменения намагничивающего тока имеет постоянное значение. Это позволяет считать, что колебания напряжения питания или изменения сопротивлений токовых проводников термометра, вызывающие изменение тока I1, на результаты не влияют.

6.2. Общие сведения об автоматических уравновешенных мостах

Автоматические уравновешенные мосты широко применяются в различных отраслях промышленности для измерения и записи температуры в комплекте с термометрами сопротивления. Они могут быть использованы для измерения, записи и сигнализации или регулирования температуры. В этом случае автоматические уравновешенные мосты, так же как и автоматические потенциометры, снабжаются дополнительным устройством для сигнализации или регулирования температуры. Некоторые модификации уравновешенных мостов снабжаются реостатными преобразователями для дистанционной передачи показаний. Автоматические уравновешенные мосты находят также применение для измерения других величин, изменение значений которых может быть преобразовано в изменение активного электрического сопротивления.

Автоматические уравновешенные мосты являются техническими приборами высокого класса точности. Они бывают показывающие, показывающие и самопишущие с записью на дисковой и ленточной диаграмме. Приборы с дисковой диаграммной бумагой служат для измерения и записи температур в одной точке и называются одноточечными. Уравновешенные мосты с ленточной диаграммой изготовляются как одноточечные, так и многоточечные, т. е. для измерения и записи температуры в одной или нескольких (3, 6, 12) точках.

Питание измерительной схемы уравновешенных мостов осуществляется напряжением переменного тока 6,3 В, частотой 50 Гц от вторичной обмотки силового трансформатора усилителя. Питание силовой цепи приборов производится от сети переменного тока напряжением 220 В, частотой 50 Гц. Применяемые усилители в уравновешенных мостах обычно снабжаются входным трансформатором.

Автоматические уравновешенные мосты, предназначенные для работы в комплекте с термометрами сопротивления, выпускаются с градуировкой шкалы в градусах Цельсия. При этом необходимо иметь в виду, что их температурная шкала действительна только для термометра сопротивления определенной градуировки и заданного значения сопротивления внешней соединительной линии.