Смекни!
smekni.com

Условия фильтрации для реактивных лестничных четырехполюсников (стр. 2 из 2)

Не трудно заметить, что модуль выражения (1) равен 1 в двух случаях:

а) при

б) при

Если обозначить

jA то

Таким образом, ПП реактивного четырехполюсника расположена на частотах, на которых справедливо неравенство

;
;
;
;

Видно, что данное неравенство имеет место при выполнении двух условий:

1.

и
должны иметь разные знаки;

2.

Фактически это и есть условие фильтрации (т.е. условие получения ПП) для реактивного Г- образного полузвена.

При составлении звеньев и более сложных фильтров из Г- образных полузвеньев, имеющих одинаковую частоту среза, затухание суммируется, следовательно условия фильтрации определяются Г- образным полузвеном.

Рассмотрим примеры применения УФ:

1) Данный четырехполюсник - ФНЧ.

Из графика видно, что условия фильтрации выполняются в полосе частот (0,ω0) поэтому данный четырехполюсник является ФНЧ.

Если L и С поменять местами, то нетрудно убедиться, что четырехполюсник будет ФВЧ.

2) Данный четырехполюсник - ПФ.

Определим условия фильтрации для мостового реактивного четырехполюсника.

Ранее мы установили, что ХПП лежит в области частот, где

В данном случае

и
откуда

Полученное выражение будет отрицательным при противоположных знаках Za и Zb.

Таким образом ХПП для мостового симметричного четырехполюсника лежит в области частот, где Za и Zb имеют противоположные знаки.

Укажем, что мостовые звенья используются при построении фазовых корреляторов, кварцевых фильтров и других устройств.

Заключение

Отметить, что использование характеристических параметров для получения условий фильтрации дает возможность сравнительно легко определить тип фильтра и примерное расположение полос пропускания и задержания. Однако расчет фильтра по характеристическим параметрам является не оптимальным и не обладает должной гибкостью. Поэтому на практике все более широкое применение находят так называемые методы синтеза электрических фильтров по их рабочим параметрам, что и будет продемонстрировано в следующих лекциях.

Литература

1. Белецкий А.Ф. «Теория линейных электрических цепей » Москва 1986 с 368-383

2. Белецкий А.Ф. «Линейные устройства аппаратуры связи. Конспект лекций»

3. Бакалов В.П. «Теория электрических цепей» Москва «Радио и связь» 1998- с.368-390