Смекни!
smekni.com

Устройство и принцип работы растрового электронного микроскопа (стр. 5 из 7)

- предварительного видеоусилителя (3).

Столик (10) предназначен для установки одного из объектодержателей (11) (рисунок 1.14,1.15) и перемещения его совместно с объектом. При помощи имеющихся механизмов объект может получить следующие движения:

перемещение вдоль осей X и Y на

5 мм при Z=0-40 мм,
мм при Z более 40 мм

подъём вдоль оси Z на 50 мм

наклон относительно оси Z на +24

..0..-10
.

Камера шлюзования включает в себя: шток для захвата объекта и введение его в объектодержатель, заслонку для отсекания камеры шлюзования от колонны прибора, клапан для включения камеры шлюзования в форвакуумную линию.

Сцинтилляционный коллектор служит приёмником вторичных и отраженных электронов. Он установлен постоянно на левой стенке корпуса камеры в верхней части. Конструктивно он состоит из двух частей: вакуумной и не вакуумной

В вакуумном объёме камеры находится: вытягивающий электрод (сетка) (9),ускоряющий электрод (6), сцинтиллятор (8) и светопровод (7).

Вне вакуума находится фотоэлектронный умножитель (ФЭУ) с делителем питания, который конструктивно входит в видеоуситель предварительный (3).

Блок предварительного видеоусителя (рисунок 1.16) крепится слева на задней скошенной стенке камеры объектов. В конструкцию блока входит фотоэлектронный умножитель ФЭУ – 68.

1.3.7 Состав электропитания

Электропитающее устройство включает:

- Щит распределительный

- Пульт управления

- Блок вакуумной блокировки

- Индикатор вакуума

- Блок питания пушки

- Стабилизатор (питания линз)

- Блок питания

- Стабилизатор (питания стигматоров)

- Стабилизатор напряжения С-0,5

Электропитающее устройство обеспечивает необходимые токи и напряжения для питания всех узлов прибора от сети переменного трёхфазного тока с фазным напряжением 220 В (линейное напряжение 380 В) частотой 50 Гц.

Блоки электропитания в основном функционально независимы. Исключение составляют щит распределительный, пульт управления и блок вакуумной блокировки, которые образуют каналы: Канал питания переменным напряжением 220 В, канал. Передние панели выдвижных блоков в совокупности образуют лицевую панель прибора. Расположение блоков в стенде прибора приведено на рисунке 1.17.

1.3.8 Контрольно-измерительные приборы

Для контроля работы блоков электропитания, проведения измерений, а также для выявления неисправностей используются приборы:

миллиамперметр М4200, 500мА;

миллиамперметр М4200, 5мА;

миллиамперметр Ц4200, 300мА;

вольтметр М4200, 75В;

комбинированный прибор Ц4341

Миллиамперметр М4200, 500мА используется для измерения тока линз. Миллиамперметр 4200, 5мА используется для измерения тока нагрузки высоковольтного выпрямителя стабилизатора ускоряющего напряжения. Миллиамперметр Ц4200,300мА используется для контроля тока накала катода источника электронов путём измерения тока первичной обмотки трансформатора накала. Вольтметр М4200,75В используется для контроля выходного напряжения источника напряжения ±50В блока питания.

1.3.9 Прибор индикатора вакуума

В качестве измерителя используется микроамперметр М24-18, напряжение полного отклонения 8,2мв, внутреннее сопротивление не более 60 Ом, класс точности 2,5. Внутри прибора имеется добавочный резистор для увеличения напряжения полного отклонения до 10мВ.

Прибор совместно со схемой позволяет контролировать ток накала ПМГ-2 и ток эмиссии ПМИ-2.

1.3.10 Видеоконтрольное устройство

Видеоконтрольное устройство (ВКУ) предназначено для формирования и воспроизведения телевизионного изображения исследуемой поверхности на экране электроннолучевой трубки (кинескопа), ВКУ выполнено на базе прикладной телевизионной установки ПТУ–29 – 1 – 2 с контурными измерениями для растрового микроскопа.

В состав ВКУ входят следующие узлы и блоки:

а) блок комбинированный;

б) блок видеконрольного устройства ВК – 23;

в) видеоусилитель предварительный;

г) блок регулировки усиления;

д) приспособлен для фотографирования.

1.3.11 Блок комбинированный

Блок комбинированный предназначен для усиления и формирования телевизионного сигнала. Он изготавливается на базе телевизионной камеры КТП – 39 от установки ПТУ 29 – 1 – 2 .

В состав блока входят следующие узлы:

а) видеоуситель УВ – 66;

б) синхрогенератор БГС – 20;

в) генератор строчной развертки ГР – 42;

г) генератор кадровой развертки ГР – 43;

д) блок фильтров БФ – 2;

е) трансформатор;

ж) узел автоматической регулировки режима АРР – 1.

Видеосигнал с предварительного видеоусилителя поступает на видеоусилитель УВ – 66, где усиливается до величины 1

1,5 в и формируется: в него замешиваются импульсы синхронизации разверток приёмного устройства и импульсы гашения луча приёмной трубки.

Синхрогенератор БГС – 20 вырабатывает все необходимые для нормальной работы ВКУ сигналы синхронизации, гашения и импульсы привязки.

Формирование пилообразного тока в строчных и кадровых отклоняющих катушках колонны осуществляется генераторами ГР – 42 и ГР – 43. Запуск этих генераторов производится синхроимпульсами, поступающими от синхрогенератора.

1.3.12 Блок видеоконтрольного устройства ВК – 23

Видеоконтрольное устройство ВК – 23 предназначено для воспроизведения телевизионного изображения поверхности исследуемого объекта на экране электроннолучевой трубки (кинескопа).

В состав ВК –23 входит:

а) кинескоп 23ЛК13Б с отклоняющей системой;

б) генератор срочной развертки ГР – 39;

в) генератор кадровой развертки ГР – 38;

г) видеоусилитель УВ – 68;

д) блок питания БП – 48.

1.3.13 Приспособление для фотографирования

Приспособление для фотографирования (рисунок 1.18) (фотоприставка) предназначена для визуального наблюдения и фотографирования изображения с экрана кинескопа .

Фотоприставка имеет форму усечённой пирамиды. На плоскости меньшего сечения имеется круглое отверстие, через которое производится фотографирование изображения.

Отверстие уплотняется светозащитным рукавом.

На плоскости меньшего сечения имеется кронштейн, на котором устанавливается фотоаппарат типа «Зенит-Е».

На боковых гранях пирамиды имеются два прямоугольных окна для визуального наблюдения изображения на экране кинескопа.


2. Экспериментальная часть

2.1 Вакуумная система

Вакуумная система предназначена для получения и поддержания в процессе работы рабочего давления 6,66·10

Па (5·10
мм рт.ст.) в колонне микроскопа.

Время откачки герметичной колонны от атмосферного давления до рабочего давления 1,33·10

Па (1·10
мм рт.ст.) не превышает 5 мин.

Кроме того, вакуумная система позволяет шлюзовать объект и работать с колонной с выключенным форвакуумным насосом в течение 20 мин.

Вакуумная система (рисунок 2.1) состоит из следующих основных узлов: вакуумного распределителя (1), диффузионного паромасляного насоса В-1С-2(3), высоковакуумной ловушки (2), форбаллона и вакуумо-проводов, которые на рисунке не указаны.

2.1.1 Вакуумный распределитель

Распределитель служит для коммутации магистралей предварительного и высокого вакуума. Распределитель показан на рисунке 2.2. В корпусе 13 размещены:

- канал1, служащий для откачки рабочего объёма на предварительный вакуум;

- каналы 21и29-для откачки форбаллона форвакуумным насосом;

- канал9- для напуска воздуха в колонну;

- канал 34- для откачки колонны дифнасосом.

Распределительный диск 24 с расположенными в нём отверстиями служит для коммутации рабочего объёма и буферного баллона с механическим насосом, а также для напуска воздуха в колонну.


2.1.2 Высоковакуумная ловушка

Высоковакуумная ловушка (рисунок 2.3) служит для улавливания паров масел и устанавливается между вакуумным распределителем и дифнасосом. Она состоит из двух частей; ловушки водяной и ловушки азотной.

2.2 Форвакуумный насос

2.2.1 Принцип действия

Первым насосом такого типа был созданный в 1912 г. пластинчато-роторньтй насос, схема которого показана на рисунке 2.4. В цилиндрической камере 1 насоса вращается в направлении, указав стрелкой, эксцентрично расположенный ротор 2, в прорези которого свободно вставлены пластины З с пружиной 4. При вращении ротора пластины скользят по внутренней поверхности цилиндра, и в камере насоса образуются две полости переменного объема: I (полость всасывания) и II (полость сжатия). Полость всасывания I при вращении ротора увеличивает свой объем, и в нее по ступает газ из впускного патрубка 5, связанного с откачиваемым объемом. Объем полости сжатия II, расположенный на выпускной стороне, уменьшается при вращении ротора, и в ней происходит сжатиё газа. Эта полость соединена с клапаном 6. Когда давление газа в полости II станет достаточным для открытия клапана, произойдет выхлоп. Выхлопной клапан находится под уровнем масла, что препятствует попаданию атмосферного воздуха в насос. В процессе работы зазоры в роторном механизме уплотняются рабочей жидкостью насоса — маслом, благодаря чему обратное перетекание газа с выхода на вход становится ничтожно малым. Масло заполняет и так называемые вредные пространства, из которых газ вытесняется при работе роторного механизма (например, объем под клапаном), и исключает их влияние, ведущее к повышению остаточного давления. Одновременно масло обеспечивает смазку и частичное охлаждение механизма насоса. Масло поступает в камеру насоса через зазоры и сверления в корпусе из маслорезервуара, где оно находится под атмосферным давлением, а через выхлопной клапан вновь возвращается в маслорезервуар.