Смекни!
smekni.com

Фазовий розмірний ефект (стр. 3 из 4)

Авторами [3] було приведено результати МД-моделювання структурної стабільності цирконію в широких інтервалах температур і тисків, використовуючи псевдопотенціал міжатомної взаємодії Анімалу.

Динаміку переходу α→β можна спостерігати на рис. 2.1, де зображені миттєві положення атомів у різні моменти часу МД-моделювання. На верхньому лівому малюнку показана вихідна α-фаза з ГЩП-решіткою перед початком температурного переходу, на верхньому правом - стан кристаліта через 300 тимчасових кроків. Видно, що перебудова структури починається практично одночасно у всім об’ємі розглянутого кристаліта. При цьому зсуву атомів відповідають двом типам коливань: короткохвильовим, що змінюють локальну структуру, і довжинохвильовим, що приводять до утворення двійникової структури. На нижньому лівому малюнку (t = 600кроків) показаний момент часу, коли формування двійників у результаті структурного переходу в β-фазу в основному закінчилося, хоча атоми, розташовані на границі областей, усе ще зберігають локальне оточення вихідної α-фази. І нарешті, через 1000 кроків (нижній правий малюнок) відбувається повна пері-будівництво атомів на границях двійників. Надалі отримана β-фаза залишається стабільної протягом усього часу спостереження.

Рисунок 2.1 – Зміни кристалічної структури Zr при переході α→β [3]

Зі зниженням температури спостерігається зворотний перехід з β-в α-фазу. На рис. 2.2 наведені ФРРА й показана зміна згодом кінетичної енергії кристаліта, вираженої в температурних одиницях. Зменшення кінетичної енергії на початковому етапі (рис. 2.2, b) відповідає відводу тепла при МД-моделюванні. Після досягнення температури, близької до 750K, починається перебудова атомів, що виражається в різкому збільшенні кінетичної енергії. Як показує аналіз атомної структури, аналогічний проведеному для рис. 3, перший основний максимум кінетичної енергії на 180000 кроці пов'язаний з перебудовою атомів на границі двійників, потім протягом короткого проміжку часу відбувається перехід у ГЩП-структуру в іншій частині кристаліта. Початок цього переходу збігається з появою другого піка на кривій кінетичній енергії. Подальше охолодження приводить до виникнення однорідної й стабільної α-фази цирконію. На рис. 2.2,a показані функції радіального розподілу залежно від часу моделювання. Числа біля кривих позначають номер кроку відповідно до рис. 2.2, b.

Розділювальна здатність, Å Час, 0,5·10-15 с

Рисунок 2.2 – Зміна функції радіального розподілу атомів (a) і кінетичної енергії кристаліта (b) при переході [3]

Кінетика мартенситного переходу з β-в α-фазу, отримана при розрахунку, у цілому погодиться з результатами попередніх досліджень Необхідно відзначити, що в цих роботах на відміну від [3] як початкова конфігурація вибиралася ОЦК-структура й основна увага була приділена моделюванню переходу β→α. При таких початкових умовах ідеальна ОЦК-решітка перетворювалася в упорядковану систему двійників із ГЩП-структурою. В результатах [3] при моделюванні переходу β → α початкова структура являла собою систему двійників ОЦК-решітки, отриманої в результаті температурного переходу з α-фази.

При цих початкових умовах знову відновлена α-фаза мала однорідну ГЩП-решітку. Це свідчить про те, що прямій і зворотний переходи відбуваються по тому самому механізму. Розрахунки авторів [3] більше узгоджуються з результатами МД-моделювання, у яких перетворення α→β відбувається при температурі T > 1925K по тім же механізмі, що й мартенситний перехід β→α.

Типова зміна структури при МД-моделюванні переходу α→ω наведено на рис. 2.3. Як видно із цього рисунка, у вихідній матриці α-фази із ГЩП-решіткою (верхній лівий рисунок) через 640 кроків з'являються області зі структурою, відмінної від ГЩП (верхній правий малюнок). Потім спостерігається ріст зародок нової фази (ніжній лівий рисунок, t = 640), і через 1820 кроків (нижній правий рисунок) нова фаза утвориться у всьому об’ємі кристаліту.

Таким чином, з розрахунку авторів [3] треба, що на відміну від перетворення α→β перехід в ω-фазу відбувається, скоріше, по механізму утворення зародків нової фази й наступного їхнього росту. При цьому час, необхідне для повного перетворення, приблизно в 2 рази більше часу, необхідного для переходу α→β. Відзначимо також, що й α↔β, і α↔ω-перетворення є зсувними, тобто перетворення повністю відбуваються за рахунок невеликих зсувів атомів.


Рисунок 2.3 – Зміни кристалічної структури Zr при переході α→ω [3]

Для визначення області структурної стабільності α-Zr залежно від тиску й температури була проведена серія МД-розрахунків при різних зовнішніх умовах (P,T). Моделювання переходів α↔β проводилося при постійному тиску Pt з покроковий зміною температури [3]. Початок переходу визначалося по різкій зміні кінетичної енергії й елементарного об'єму, а так-же по зміні ФРРА. Моделювання переходів α↔ω проводилося при постійній температурі Tt, при цьому тиск змінювався по кроку. Початок переходу також визначалося по стрибку кінетичної енергії й контролювалося по зміні елементарного об'єму й ФРРА. Отримані результати авторів [3] приведені на рис. 2.4. Положення символів на малюнку відповідає значенням пар (Pt,Tt), отриманих у процесі МД-моделювання. Квадратами позначені експериментальні дані інших вчених. Слід зазначити, що експериментальні значення тиску, що відповідають переходу в ω-фазу при кімнатній температурі, значно розрізняються в різних авторів і залежать від умов проведення експерименту. Згідно даним роботи інших вчених, тиск рівноваги перетворення α↔ω, отримане в досвідах зі зсувними деформаціями, становить 22kbar. Експерименти, проведені за допомогою виміру електроопору при квазігідростатичному стиску цирконію, дають порівняльна більші значення тиску - від 50 до 70kbar. На рис. 2.4 приведені крайні експериментальні значення. Тонкими суцільними лініями умовно розділені області стабільності α-, β-і ω-фаз Zr. Темними кружками й трикутниками позначені прямі переходи з α-фази відповідно в β-і ω-фази, отримані при МД-моделюванні [3]. Світлими кружками й трикутниками відзначені крапки, у яких починається зворотний перехід в α-фазу.

Давление, Mbar

Рисунок 2.4 – Область стабільності α-фази Zr, отримана при молекулярно-динамічному моделюванні [3]

Як видно із цього рисунка, є значний гістерезис прямого й зворотного перетворень як для α↔β-,так і для α↔ω-переходу, причому якщо величина гістерезису для переходу α↔β практично не залежить від температури й тиску, то для переходу α↔ω спостерігається сильна температурна залежність. Наявність значного гістерезису при кімнатних температурах у МД-розрахунках [3] добре погодиться з експериментальним фактом існування метастабільної ω-фази при атмосферному тиску після зняття тиску.

На відміну від експерименту перехід з α-в β-фазу спостерігався авторами [3] тільки під тиском, тоді як зворотній перехід був отриманий і при нормальному тиску. На рис. 2.4 автори [3] додатково привели лінії розділу фаз, що відповідають середньому положенню між прямим і зворотним переходами (жирні лінії). Необхідно відзначити, що у всіх випадках нахил лінії рівноваги α–β набагато більше експериментального. Це може бути пов'язане з тим, що в розрахунках потенціал міжатомної взаємодії не змінювався з тиском, а також з тим, що при МД-моделюванні неможливо врахувати внесок від електронної ентропії. Електронна ентропія відіграє значну роль у стабілізації високотемпературної ОЦК-фази. Початковий розрахунок авторів [3] фазової діаграми цирконію показує, що облік електронної ентропії знижує температуру переходу α→β при атмосферному тиску приблизно на 400K. Оскільки різниця ентропії двох фаз ΔS = Sα – Sβ зменшується з тиском, при більших тисках роль електронної ентропії стає незначною. На думку авторів [3], це основна причина, по якій температура переходу α–β, отримана авторами [3] при МД-моделюванні, близька до експериментальних даних при високих тисках і значно розходиться з ними в області низьких тисків.

З аналізу зміни величини гістерезису треба, що при переході α–β глибина енергетичної ями вихідної α-структури обернено пропорційна тиску, тобто. при переході α→β висота енергетичного бар'єра, що відокремлює α-структуру від β-фази, зі збільшенням тиску зменшується. При зменшенні тиску збільшується висота бар'єра для β-фази.

Зовсім по-іншому змінюється висота бар'єра при перетворенні α-ω. Перехід із α-в ω-фазу супроводжується зменшенням енергетичного бар'єра з боку α-фази при збільшенні тиску. Це треба з негативного нахилу лінії роздягнула фаз (темні трикутники на рис. 2.4). Зворотній перехід (світлі трикутники на рис. 2.4) супроводжується зменшенням бар'єра з боку ω-фази при зменшенні тиску. Різна залежність висоти бар'єра від тиску при прямому й зворотному переході α-ω свідчить проте, що, хоча один і інший перехід є зсувним, нестійкість решіток пов'язана з різною комбінацією коливальних мод.

Автори [3] зробили висновки, що структурні перетворення α↔β і α↔ω відбуваються за рахунок невеликих зсувів атомів, пов'язаних з наявністю як короткохвильову, визначальну локальну структуру після переходу, так і довгохвильових коливань, що приводять до утворення великомасштабних структур типу двійників. Прямий перехід α→β на початковому етапі йде за рахунок утворення двійникової системи, у якій відбувається перебудова структури в об'ємі двійників, тоді як у ближньому порядку на границях двійників як і раніше залишається вихідна ГЩП-решітка. Наступні зміни цілком пов’язані з перебудовою й рухом границі двійників. Зворотний перехід (β→α) при зниженні температури з високотемпературної ОЦК-фази починається з перебудовою границь двійників і утворення на границях у ближньому порядку ГЩП-структури з наступним швидким переходом в α-фазу у всій області кристаліта. Зі збільшенням тиску температура переходу α↔β знижується. Однак нахил лінії роздягнула цих фаз значно більше експериментального, що може бути пов'язане з відсутністю внеску електронної ентропії при МД-моделюванні.