Смекни!
smekni.com

Фазовые диаграммы как средство описания взаимодействия различных материалов. Основные фазовые диаграммы с участием кремния (стр. 2 из 3)

2. Системы веществ, имеющие важное значение в микроэлектронике

Существует ряд материалов, которые полностью растворимы друг в друге. Примером может служить система из двух таких важных для микроэлектроники веществ, как кремний и германий. Система кремний – германий показана на рис. 6.

Рис. 6. Система кремний – германий

Диаграмма не имеет эвтектической точки. Подобная диаграмма называется изоморфной. Для того чтобы два элемента были изоморфными, они должны подчиняться правилам Хьюма – Ротери, т.е. иметь различие в значениях атомных радиусов не более чем на 15%, одинаковую вероятность, одинаковую кристаллическую решетку и, кроме того, приблизительно одинаковую электроотрицательность (электроотрицательность атома – это присущее ему семейство привлекать или захватывать лишние электроны, при ковалентных связях). Системы Cu – Ni, Au – Pt и Ag – Pd, также являются изоморфными.

Система Pb – Sn служит хорошим примером простой бинарной системы со значительной, хотя и ограниченной твердой растворимостью. Фазовая диаграмма состояний этой системы приведена на рис. 7. Точка пересечения солидуса и сольвуса называется граничной растворимостью, значение граничной растворимости как олова в свинце, так и свинца в олове будет большим. Данная система важна для микроэлектроники благодаря широкому применению оловянных-свинцовых припоев. Их двухфазной диаграммы этой системы видно, как изменение состава сплава меняет его температуру плавления. Когда при изготовлении микросхемы требуется провести несколько последовательных паек, то для каждой следующей пайки применяется припой с более низкой температурой плавления. Это делается для того, чтобы не потекли пайки, сделанные раньше.

Рис. 7. Фазовая диаграмма состояний системы свинец – олово

Для производства микросхем также важны свойства системы Au – Si, поскольку эвтектическая температура этой системы крайне мала по сравнению с температурами плавления чистого золота или чистого кремния (рис 9). Растворимости золота в кремнии и кремния в золоте слишком малы, чтобы их отобразить на обычной фазовой диаграмме состояний. Из-за низкой эвтектической температуры оказывается выгодно устанавливать кристаллы микросхем на золотые подложки, держатели или платы с золотыми контактными площадками, пользуясь эвтектической реакцией Au – Si в качестве основного механизма сварки (или пайки). Для пайки кремниевых кристаллов также используется золото, содержащее несколько процентов германия.

Комбинации элементов, образующих химические соединения, имеют более сложные диаграммы состояний. Их можно разбить на две (или несколько) более простых диаграммы, каждая из которых относится к определенной паре соединений или соединению и элементов. Например, AuAl2 образуется при соединении 33% (процент атомный) золота с алюминием при температуре менее 1060о (рис. 2.10). Слева от этой линии сосуществует AuAl2 и фаза чистого алюминия. Соединения, подобные AuAl2, называются интерметаллическими и образуются при соответствующем стехиометрическом соотношении двух элементов. Интерметаллические соединения характеризуются высокой температурой плавления, сложной кристаллической структурой и, кроме того, отличаются твердостью и хрупкостью.

Фазовая диаграмма состояний Au – Al может быть разбита на две или больше диаграмм, например на диаграмму Al – AuAl2 и диаграмму AuAl2 – Au.


Рис. 8. Система алюминий – кремний

Диаграмма системы Au – Al, показанная на рис. 2.10, имеет в микроэлектронике крайне важное значение, поскольку обычно золотые провода соединяются с алюминиевым слоем металлизации, расположенным поверх кремния. Здесь указано несколько важных интерметаллических соединений: AuAl2, Au2Al, Au5Al2 и Au4Al. В проводниках связей Au – Al они могут присутствовать все.


Рис. 9. Система золото – кремний

Рис. 10. Система золото – алюминий


3. Твердая растворимость

Граничная растворимость большинства легирующих примесей в кремнии крайне мала и в действительности не является максимальной растворимостью. На рис. 11 представлена типичная кривая солидуса для примеси без кремния. Заметьте, что растворимость растет с температурой до определенного значения, а затем убывает до нуля при температуре плавления кремния. Такая кривая называется ретроградной кривой растворимости. Уточненная версия этой диаграммы в окрестности точки плавления кремния показана на рис. 12.

Рис. 11 Ретроградная растворимость кремния

Рис. 12 Типичная фазовая диаграмма кремния

Если состав расплава кремния равен CM в процентах массы растворенного вещества, то кремний будет застывать с содержанием растворенного вещества kCM, где k – коэффициент сегрегации (k=CS/CL). Когда концентрация в твердом теле достигнет значения CM при замораживании, концентрация в жидком растворе будет равна CM/k, поскольку соотношение концентраций в жидком и твердом растрах должна быть равна k. Наклон линии солидуса, следовательно, равен

,

а наклон ликвидуса равен

.

Отношение наклонов ликвидуса и солидуса оказывается равным коэффициенту сегрегации

. (2)

4. Фазовые переходы

Переходы из одного фазового состояния в другое при изменении параметров системы.

Фазовые переходы первого рода (испарение, конденсация, плавление, кристаллизация, переходы из одной кристаллической модификации в другую).

Кристаллическое состояние веществ классифицируется по семи сингониям (триклинная, моноклинная, ромбическая, тетрагональная, тригональная или ромб…., гексагональная, кубическая) при этом расположение атомов в этих сингониях характеризуется 14 типами решеток (решетки Браве). Степень упаковки атомов в этих решетках различна:


Простая кубическая f = 0,52

Объемно центрировая кубическая f = 0,68

Гранецентрированная кубическая f = 0,74

Гексагональная плотная упаковка f = 0,74

Из этих данных следует очень важный вывод, при полиморфных превращениях (изменение типа кристаллической решетки) происходит изменение объема и следовательно физико-химических свойств материалов.

При переходах первого рода в точке перехода сосуществует две фазы.

AB

а) переход осуществляется при определенной температуре Tпер

б) при переходе изменяются скачком первые производные энергии: энтальпии, энтропии, объема (следовательно значит и плотности)


Фазовые переходы второго рода

При переходах второго рода первые производные свободной энергии, энтальпии, энтропии, объема, плотности изменяются монотонно.

Титанат бария – кубическая структура –> тетрагональный типичный пьезоэлектрик.

MnO – антиферромагнетик при 117 К переходит в парамагнитную фазу.

1. Согласно классификации фазовых превращений, предложенной в 1933 г. Эрипреситом, превращения подразделяются на превращения (переходы) I и II родов.

Переходы первого рода характеризуются тем, что первые производные термодинамического потенциала  по температуре и давлению изменяются скачкообразно

,

здесь S – энтропия, V – объем

Так как термодинамический потенциал при фазовых переходе меняется непрерывно определяется выражением

то энергия U также должна изменяться скачком. Так как


то теплота перехода

равна произведению температуры на разность энтропии фаз, т. е. скачкообразное изменение или поглощение теплоты.

Важным является непрерывное изменение термодинамического потенциала. Функция

(Т) и
(Т) не изменяют особенностей вблизи точки фазового перехода, при этом с обеих сторон точки фазового перехода имеются минимумы термодинамического потенциала.

Этой особенностью объясняется возможность перегрева или переохлаждения фаз в случае фазовых переходов в системе.

Определим взаимосвязи между скачками термодинамических функций

и
. После дифференцировании по температуре соотношение Функция
(Р,Т) =
(Р,Т) с учетом выражения для S, V и q получим