Смекни!
smekni.com

Физика (стр. 4 из 9)

где постоянная определяется свойствами частицы, взаимодействующей с полем сил.

Подставим соотношение (1.35) в (1.33) и опять проинтегрируем вдоль траектории от точки 1 до точки 2. Получим

T2- T1+const2 - φ1) = О,

т.е. величинаT2+const·φ2 = T1+const·φ1

остается постоянной при движении вдоль траектории. Таким образом, для частицы в потенциальном поле внешней силы сохраняется, т. е. является интегралом движения, величина

E= T+const·φ(r). (1.36)

Величина U = const·φ(r) называется потенциальной энергией частицы в поле φ(r), а выражение (1.36) представляет собой полную механическую энергию частицы

E= T+ U. (1.37)

ЭЛЕКТРИЧЕСТВО

Постоянное электрическое поле

Электрический заряд

Электрический заряд – определение:

Электрический заряд - характеристика частиц, определяющая интенсивность их электромагнитного взаимодействия.

Два вида зарядов

Существует два вида электрических зарядов, условно называемых положительными и отрицательными.

Взаимодействие зарядов разных знаков

Заряды разных знаков притягиваются друг к другу,
заряды одного знака отталкиваются.

Элементарные частицы - носители заряда

Носителями заряда являются элементарные частицы, заряд элементарных частиц, если они заряжены, одинаков по абсолютной величине e = 1.6·10-19 Кл.

Электрон имеет отрицательный заряд (-е), протон - положительный (+е), заряд нейтрона равен нулю. Из этих частиц построены атомы любого вещества.

Суммарный заряд атома равен нулю.

Закон сохранения заряда утверждает

В электрически изолированной системе суммарный заряд не может изменяться.

Релятивистская инвариантность заряда означает, что его величина, измеренная в различных инерциальных системах отсчета, оказывается одинаковой.

Или: Величина заряда не зависит от скорости, с которой он движется.

Взаимодействие точечных зарядов

Точечный заряд - модель заряженного тела, сохраняющая три его свойства: положение в пространстве, заряд и массу.

Или: точечный заряд - это заряженное тело, размерами которого можно пренебречь.

Закон Кулона Взаимодействие двух точечных неподвижных зарядов в вакууме описывается законом Кулона:

.

В системе СИ

,

ε0 = 8.85 ·10-12 Ф/м.


Закон Кулона в системе СИ

.

Единица заряда в системе СИ - кулон Один кулон (1 Кл) определяется через единицу силы тока, см. (10.1).

Принцип суперпозиции утверждает, что сила взаимодействия двух зарядов не изменится, если к ним добавить еще какие либо заряды. Для зарядов на рисунке это значит, что

и
не зависят от присутствия заряда q3,
и
не зависят от присутствия заряда q2, аналогично -
и
не завися от заряда q1.
Значит, результирующую силу, действующую на любой заряд, можно найти как векторную сумму сил попарного взаимодействия зарядов. Для заряда q1 результирующая сила
,аналогично и для остальных зарядов:

Электрическое поле

Заряд - источник поля. Всякий покоящийся заряд создает в пространстве вокруг себя только электрическое поле. Движущийся - еще и магнитное.

Заряд - индикатор поля. О наличии электрического поля судят по силе, действующей на неподвижный положительный точечный заряд, помещенный в это поле (пробный заряд).

Напряженность - силовая характеристика электрического поля. Если на неподвижный точечный заряд qпр. действует сила, то значит, в точке нахождения этого заряда существует электрическое поле, напряженность которого определяется так:

.

Единица напряженности в системе СИ имеет название вольт на метр (В/м), при такой напряженности на заряд в 1 Кл действует сила в 1 Н. Происхождение размерности В/м .

Знаем напряженность - найдем силу

Если в каждой точке пространства нам известна напряженность электрического поля

, то мы можем найти силу, действующую на точечный заряд, помещенный в точку r (3.3)

.

Принцип суперпозиции электрических полей

Из (2.4) следует, что поля складываются, не возмущая друг друга. Если поле создано системой зарядов, то результирующее поле равно векторной сумме полей отдельных зарядов:
.

Напряженность поля точечного заряда

Задача - найти напряженность поля, созданного в точке
точечным зарядом q.

Решение:

а) поместим в точку

пробный заряд qпр и найдем по закону Кулона (2.2) силу, действующую на пробный заряд:

;

б) воспользуемся определением напряженности электрического поля (3.3):

.

Для модуля напряженности:


.

Ответ: напряженность поля, созданного в точке

точечным зарядом q, прямо пропорциональна величине этого заряда (создающего поле, заряда - источника поля) и обратно пропорциональна квадрату расстояния от заряда - источника поля до точки, где ищется поле.

!!! Пробный заряд в ответ не входит!

.

Линии напряженности

Для графического изображения электрического поля используются линии напряженности (силовые линии). Их строят по следующим правилам:

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных или уходят в бесконечность.
Вектор напряженности направлен по касательной к линии напряженности в каждой точке.
Густота линий пропорциональна модулю напряженности электрического поля.

3.9 Линии напряженности точечных зарядов


а) поле положительного заряда

б) поле отрицательного заряда


в) поле двух разноименных зарядов

г) поле двух одноименных зарядов

Теорема Гаусса

Поток вектора напряжeнности электрического поля

Поток вектора

для однородного поля

Для

Здесь

- вектор нормали к поверхности S.