Смекни!
smekni.com

Физика, основы теории (стр. 12 из 14)

В отсутствии внешнего электрического поля электроны проводимости совершают хаотическое тепловое движение со средней квадратичной скоростью vкв., зависящей от температуры металла (vкв ~ √Т). Когда к металлу приложено внешнее электрическое поле, электроны проводимости начинают двигаться со средней скоростью vср., пропорциональной напряженности электрического поля Е, образуя электрический ток. Эта скорость пренебрежимо мала по сравнению со средней квадратичной скоростью, поэтому во всех расчетах, связанных со столкновениями электронов проводимости с решеткой, скоростью движения электронов считают среднюю квадратичную скорость vкв.

С точки зрения электронной теории сопротивление металлов обусловлено соударениями электронов проводимости с ионами кристаллической решетки. С ростом температуры сопротивление металлических проводников увеличивается, так как, чем выше температура, тем интенсивнее колебания кристаллической решетки и тем чаще электроны сталкиваются с ними. Экспериментально установлено, что зависимость сопротивления чистых металлов от температуры выражается формулой R = Ro (1 + αt). Коэффициент пропорциональности α называют температурным коэффициентом сопротивления (α > 0).

В 1911 г. голландский физик Камерлинг-Оннес обнаружил, что при температурах, близких к абсолютному нулю, сопротивление некоторых химически чистых металлов (например, цинка, алюминия, олова, ртути, свинца), а также ряда сплавов скачком падает до нуля. Это явление получило название сверхпроводимости. Это явление не может быть объяснено на основе классической электронной теории проводимости. Объяснение этому явлению дает только квантовая механика. Классическая электронная теория проводимости оказалась не в состоянии объяснить зависимость сопротивления металлов от температуры (т.к. согласно этой теории R~√Т, на практике R~Т.

17. Основы квантовой теории металлов

В классической электронной теории проводимости металлов электроны проводимости могут обладать любыми значениями энергии. Согласно квантовой теории энергия электронов в любом кристаллическом теле (в частности, в металле) так же, как и энергия электронов в атоме квантуется. Это означает, что она может принимать лишь дискретные (т.е. разделенные конечными промежутками) значения, называемые уровнями энергии. Дозволенные уровни энергии в кристалле группируются в зоны. Чтобы понять происхождение зон, рассмотрим воображаемый процесс объединения атомов в кристалл. Пусть первоначально имеется N изолированных одинаковых атомов какого-либо вещества. Каждый электрон любого атома обладает одним из разрешенных значений энергии, т.е. занимает один из дозволенных энергетических уровней. В основном, невозбужденном состоянии атома суммарная энергия электронов имеет минимальное возможное значение. Казалось бы, что все электроны должны находиться на самом низком уровне. Однако электроны подчиняются принципу запрета Паули, который гласит, что в любой квантовой системе (атоме, молекуле, кристалле и т. д.) на каждом энергетическом уровне может находиться не более двух электронов, причем спины электронов, занимающих одновременно один и тот же уровень, должны иметь противоположные направления. Следовательно, на самом низком уровне атома может разместиться только два электрона, остальные занимают попарно более высокие уровни.

Пока атомы изолированы друг от друга, они имеют полностью совпадающие схемы энергетических уровней. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах.

По мере сближения атомов между ними возникает всё усиливающееся взаимодействие, которое приводит к изменению положения уровней. Вместо одного одинакового для всех N атомов уровня возникает N очень близких, но не совпадающих уровней. Таким образом, каждый уровень изолированного атома расщепляется в кристалле на N густо расположенных уровней, образующих полосу или зону.

Электроны внешней оболочки атома заполняют ряд энергетических уровней, составляющих валентную зону. Валентные электроны участвуют в электрических и химических процессах. Более низкие энергетические уровни входят в состав других зон, заполненных электронами, но эти зоны не играют роли в явлении электропроводности.

В металлах и полупроводниках существует большое число электронов, находящихся на более высоких энергетических уровнях. Эти уровни составляют зону проводимости. Электроны этой зоны, называемые электронами проводимости, совершают беспорядочное движение внутри тела, переходя от одних атомов к другим. Именно электроны проводимости обеспечивают высокую электропроводность металлов.

У металлов зона проводимости непосредственно примыкает к валентной зоне. Поэтому при нормальной температуре в металлах большое число электронов имеет энергию, достаточную для перехода из валентной зоны в зону проводимости. Практически каждый атом металла отдает в зону проводимости, по крайней мере, один электрон. Таким образом, число электронов проводимости в металлах не меньше числа атомов.

18. Электрический ток в растворах и расплавах электролитов. Закон Фарадея для электролиза

Электролитами называют водные растворы солей, кислот и щелочей, а также расплавы солей.

Распад на ионы молекул растворяемого вещества под действием молекул растворителя называют электролитической диссоциацией.

Если в электролит поместить два электрода (катод и анод) с некоторой разностью потенциалов, то ионы начнут двигаться упорядоченно: положительные к катоду, а отрицательные к аноду.

Электрический ток в электролитах представляет собой направленное движение ионов.

Процесс выделения вещества на электродах или вблизи них при прохождении тока через электролиты называю электролизом.

Применения электролиза.

1. Гальваностегия (золочение, серебрение, никелирование изделий).

2. Гальванопластика (получение копий).

3. Получение чистых металлов (медь, алюминий), а также очистка металлов от примесей.

4. Электрическая полировка металлических изделий.

5. Получение водорода.

Согласно закону Фарадея для электролиза:

масса вещества, выделившегося при электролизе, прямо пропорциональна силе тока и времени его прохождения через электролит.

m = k I t = k q

k– электрохимический эквивалент вещества (зависит от атомной массы и валентности вещества),

q – заряд, прошедший через раствор электролита за время t.

19. Электрический ток в газах. Самостоятельный и несамостоятельный разряд

При отсутствии облучения и при невысоких температурах газы практически не проводят электрический ток, т.е. являются диэлектриками. Газ становится электропроводным в результате ионизации. Ионизация может быть вызвана нагреванием газа до высокой температуры или действием ультрафиолетового, рентгеновского, гамма-излучения. Ионизация газа состоит в том, что нейтральные молекулы или атомы газа теряют электроны и превращаются в положительные ионы. Большинство освободившихся электронов остаются свободными, но некоторые присоединяются к молекулам (или атомам) и образуют отрицательные ионы. Таким образом, в результате ионизации в газе появляются три типа носителей заряда: положительные, отрицательные ионы и электроны.

При создании в газе электрического поля положительные ионы движутся к катоду, а электроны и отрицательные ионы - к аноду, образуя электрический ток.

Электрический ток через газ называют газовым разрядом.

Если разряд протекает только при действии ионизатора, то разряд являетсянесамостоятельным. Если разряд может протекать без действия внешнего ионизатора, то его называют самостоятельным.

ВИДЫ САМОСТОЯТЕЛЬНОГО РАЗРЯДА.

1. Тлеющий разряд представляет собой ток малой плотности, возникающий при низком давлении (от сотых долей до нескольких мм.рт.ст.) и напряжении наэлектродах порядканескольких сотен вольт. Тлеющий разряд сопровождается свечением столба газа. Его используют в светящихся рубках рекламы (заполненных неоном, аргоном), а также в лампах дневного света для возбуждения люминофора, которым покрыта внутренняя поверхность трубки.

2. Коронный разряд представляет собой ток через газ при атмосферном давлении, возникающий под действием неоднородного электрического поля высокой напряженности. Коронный разряд сопровождается слабым свечением и небольшим шумом. Коронный разряд наблюдается вблизи заостренных частей проводников в том случае, когда напряженность электрического поля возле проводника превышает 3 · 106 В/м. Причиной разряда является ударная ионизация газа, происходящая в области, непосредственно граничащей с проводником. Особеннонежелательно возникновениеэтого разряда в высоковольтных ЛЭП, так как он приводит к потерям электрической энергии. Коронный разряд используют в электрических фильтрах для очистки продуктов сгорания топлива.

3. Дуговой разряд – это ток большой плотности через газ при невысоких напряжениях (десятки вольт). Дуговой разряд сопровождается сильным свечением газа и очень высокой температурой (несколько тысяч градусов). Дуговой разряд поддерживается термоэлектронной эмиссией, происходящей с поверхности разогретого катода, и термической ионизацией молекул газа. Дуговой разряд применяют для дуговой сварки металлов; в электрометаллургии(в дуговых печах для выплавки металлов); в химических производствах (например, для получения из воздуха оксида азота в целях производства азотной кислоты); в качестве сильного источника света (в прожекторах, в дуговых лампах) и т.д.