Смекни!
smekni.com

Физика: механика и термодинамика (стр. 8 из 10)

Второй механизм сил сопротивления связан с образованием вихрей (рис.3). Давление в жидкости меняется в зависимости от скорости потока так, что в области вихрей оно существенно уменьшается (уравнение Бернулли: p1+rv12/2=p2+rv22/2 ). Разность давлений Dp=r(v12 v22)/2 в областях перед телом и за ним создает силу «лобового» сопротивления и тормозит движение тела. Часть работы, совершаемой силами трения при движении тела в жидкости, идет на образование вихрей, энергия которых пере­ходит затем в теплоту.

Если движение тела в жидкости происходит медленно, без образования вихрей, то сила сопротив­ления создается только по первому из описанных механизмов. Для тел сферической формы ее величину определяют по формуле Стокса:

Fc=6phrv (2)

где г - радиус шарика; v - скорость его равномерного движения; h - вязкость жидкости.

2. Экспериментальная часть

Часть I.Определение вязкости жидкости по методу Стокса

Теория метода

Надвижущийся шарик в жидкости действуют трисилы: силатяжести - Р, выталки­вающая сила FAи сила сопротивления Fc. Силу тяжести и выталкивающую силу можно определить через объем шарика, плотность r шарика и плотность r0 жидкости:

P=4pr3rg/3(3)

FA =4pr3ro g/3 (4)

Сила тяжести и выталкивающая сила постоянны. При малой скорости падения шари­ка сила сопротивления прямо пропорциональна этой скорости и поэтому на начальном этапе он движется равноускоренно. Затем наступает момент, когда все три силы уравновешиваются, и шарик начинает двигаться равномерно:

P=FA + Fc или 4pr3rg/3=4pr3rog/3+6phrv, (5)

откуда

(6)

Экспериментальная установка

Для определения вязкости жидкости по методу Стокса берется высокий цилиндрический сосуд с исследуемой жидкостью (рис.4). На сосуде имеются две кольцевые метки А и В. Метка А соответствует той высоте, где силы, действующие на шарик, уравновешивают друг друга и движение становится равномерным. Нижняя метка В нанесена для удобства отсчета времени в момент падения шарика.

Бросая шарик в сосуд, отмечают по секундомеру время t прохождения шариком расстояния l = АВ между двумя метками.

Если в формулу (6) подставить выражение для скорости движения v=l/t и вместо радиуса r ввести диаметр шарика d, то окончательная расчетная формула приобретает вид:

( 7)

Ход выполнения работы

1. Измерьте расстояние между метками А и В.

2. При необходимости измерьте с помощью ареометра плотность жидкости r0.

3. Измерьте микрометром или штангенциркулем диаметр d шарика.

4. Бросив шарик в сосуд с жидкостью, измерьте время t прохождения шариком рас­стояния между метками А и В.

5. По формуле (7) вычислите вязкость жидкости h.

6. Аналогичные измерения проделайте с пятью шариками. Результаты измерений и вычислений заносите в таблицу 1 отчета.

7. По результатам всех опытов найдите среднее значение вязкости h.

8. Для оценки систематической погрешности измерения вязкости используйте расчетную формулу (7). Выведите формулу для вычисления относительной погреш­ности измерения. При этом условно считается, что табличные величины, входящие в формулу, не имеют погрешностей, а погрешности измеренных величин /, d, r опре­деляются точностью приборов, использованных для их измерения.

9. Полученное значение вязкости сравните с табличной величиной для дан­ной жидкости. При объяснении причин расхождения укажите какой из используемых измерительных приборов вносит в окончательный результат наибольшую погрешность.

Часть II. Определение вязкости воздуха по методу Пуазейля

Теория метода

При ламинарном движении жидкостей и газов по гладким цилиндрическим трубам расход (объем жидкости или газа, протекающих через поперечное сечение трубы за одну секунду), зависит от ее вязкости, диаметра трубы, ее длины и разности давления на ее концах. Соответствующее соотношение было выведено Пуазейлем и носит его имя.

V=Dp pr2Dt/hl ,

куда входят перепад давления, радиус трубы, длительность течения, коэффициент вязкости, длина трубы.

На основании этого соотношения разработан и широко применяется метод измерения вязкости жидкостей и газов - метод Пуазейля.

Для газов он состоит в измерении скорости ламинарного протекания газов в тонком капилляре с известными размерами и при контролируемой разности давлений. В данной работе по методу Пуазейля определяется вязкость воздуха. На величину вязкости газов большое влияние оказывают посторонние примеси. Для атмосферного воздуха, например, следует учитывать содержание водяных паров. В установках для точных измерений воздух перед поступлением в капилляр осушают различными, чаще всего химическими осушителями. Важно также помнить, что вязкость газов в большой степени зависит от их температуры, что также предусмотрено в лабораторных приборах.

Экспериментальная установка

Экспериментальная установка для определения воздуха (рис. 4) состоит из сосуда 1 со сливным шлангом 2, капилляра 3, мерительного стакана 4 и жидкостного манометра 5. Перед опытом сосуд заполняется водой. При опущенном шланге 2 уровень воды в со­суде уменьшается и возникает перепад давлений воздуха на концах А и В капилляра 3, который измеряется манометром 5. Освободившийся объем занимает воздух, прони­кающий в сосуд через капилляр. При этом объем вытекшей воды равен объему воздуха, прошедшему через капилляр.

Расчетная формула для определения коэффици­ента вязкости по методу Пуазейля имеет вид:

(8)

где d- диаметр капилляра, / - его длина, V- объем прошедшего через капилляр воздуха (объем вы­текшей из сосуда жидкости), Dр - перепад давле­ний на концах капилляра (показание манометра), t - время протекания воздуха через капилляр.

Ход выполнения работы

1. Закрепите сливной шланг в вертикальном по­ложении. Заполните сосуд 7 водой до начала его конической части. Плотно закрепите пробку с капилляром в горловине сосуда.

2. Опустите сливной шланг вниз, подставив под него мерный сосуд. Измерьте секундомером время t, в течение которого из сосуда вытечет объем V=200 см3 воды.

3. Измерьте в это же времени перепад давлений Dр по манометру.

Примечание: При постепенном понижении уровня воды в сосуде скорость истечения уменьшается. Это приводит к изменению перепада давлений воздуха на концах капил­ляра. Поэтому необходимо брать среднее за время опыта значение Dр.

4. По формуле (8) вычислите вязкость воздуха.

5. Опыт повторите не менее трех раз. Результаты занесите в таблицу 2 отчета.

6. Оцените относительную погрешность измерения вязкости воздуха. Погрешности измерений диаметра и длины капилляра возьмите из «паспорта» прибора.

9. В выводе сравните полученное значение вязкости воздуха с табличным значением (h=1,8×10-5 Па×с при 18оС)

Дополнительное задание

1. Вычислите плотность воздуха по формуле

, где М = 0,029 кг/моль – молярная масса воздуха, R - универсальная газовая постоянная, давление и температура - нормальные.

2. Вычислите среднюю арифметическую скорость молекул воздуха при данных условиях

.

3. Вычислить среднюю длину свободного пробега

молекул воздуха при нормаль­ных условиях, исходя из формулы Максвелла
.

4. Исходя из формулы р = nkT , вычислить концентрацию п молекул воздуха при нормальных условиях (k - постоянная Больцмана).

5. Вычислить среднее число столкновений молекул, испытываемых одной молекулойза одну секунду

.

6. Вычислить эффективный диаметр молекул воздуха