Смекни!
smekni.com

Физика: механика и термодинамика (стр. 9 из 10)

Отчет по лабораторной работе №4

«Вязкость жидкостей и газов»

выполненной студент…. …. курса, ….. Ф.И. ……….

группа ….. «….» …………….. 200 … г.

Цель работы: ………………………………………………………………………………………

Часть I. Определение вязкости жидкости по методу Стокса

Таблица 1

Жидкость....................

Расстояние между метками l=... ±..... см

Плотность жидкости r0 = …± … г/см3

Плотность материала шарика r = … ± … г/см3

№ п/п

Диаметр шарика

d, мм

Время движения шарика t, с

Вязкость жидкости

h, Па× с

1
2
3
4
5
Среднее значение вязкости жидкости

Формулы для расчета и расчет погрешности измерения вязкости жидкости1:

Вывод: ……………………………………………………………………………………………..

Часть П. Определение вязкости воздуха по методу Пуазейля

Таблица 2

Диаметр капилляра d =... ± ... мм; Длина капилляра I =... ±.... мм

№ п/п

Объем

прошедшего

через капилляр

воздуха V,

см3 (или мл)

Перепад

давлений, Dh,

см вод. ст.

Перепад

давлений Dр,

Па

Время

протекания воздуха через капилляр t,

с

Вязкость воздуха

h´10-5 , Па×с

1
2
3
Среднее значение вязкости воздуха

Формулы для расчета и расчет погрешности измерения вязкости воздуха[2]:

Вывод: ……………………………………………………………………………………………..

Дополнительное задание

Нормальные условия:p = … мм рт. ст.= … Па; T = … К

1. Плотность воздуха: r = … кг/м3

2. Средняя арифметическая скорость молекул воздуха:

3. Средняя длина свободного пробега молекул воздуха:

4. Концентрация молекул воздуха: n =… 1/м3

5. Среднее число столкновений молекул воздуха

6. Эффективный диаметр молекул воздуха: d = … м


Цель работы:

Углубление теоретических представлений об энтропии, экспериментальное наблюдение процесса плавления и кристаллизации и получение навыков измерения изменения энтропии.

1. Теоретическая часть

Термодинамический процесс обратим, если, протекая в обратном направлении, он возвращает систему в исходное состояние без затрат энергии (упругий удар, колебания маятника в отсутствии сопротивления, идеализированный цикл Карно). Большинство процессов в технике – необратимы или, по крайней мере, содержат этапы, являющиеся необратимыми (неупругий удар, процессы с трением, диффузия, теплообмен). Энтропия является количественной мерой степени необратимости процесса.

Из равенства КПД тепловых двигателей и термического КПД обратимого цикла Карно

(1)

можно получить выражение

(2)

Это выражение означает, что количество теплоты, полученное или отданное телом при обратимом процессе, пропорционально температуре. Отношение Q/T называется приведенным количеством теплоты. Сумма приведенных количеств теплоты при любом обратимом процессе равна нулю, что в дифференциальной форме имеет вид

,
(3)

причем интеграл берется по замкнутому контуру (круговой процесс). В каждом цикле кругового процесса все термодинамические параметры принимают исходные значения, т.е. их изменение равно нулю. В этом случае равна нулю и сумма приведенных количеств теплоты, что позволяет ввести термодинамический параметр состояния энтропию S, как некоторую функцию состояния, дифференциал которой

(4)

Если некоторая термодинамическая система обратимо переходит из состояния 1, характеризующегося параметрами р1, V1,Т1, в состояние 2 с параметрами р2, V2, Т2, то изменение энтропии системы при таком переходе может быть вычислено по формуле

, (5)

где dQ элементарный приток теплоты в систему, Т - термодинамическая температура всей системы. Интеграл берется вдоль «траектории» процесса, например абс при нагревании и плавлении, как показано на рисунке 1.

Возможны следующие три случая:

а) DS=0 – процесс обратим, может протекать как в прямом, так и в обратном направлениях;

б)DS>0 - процесс необратим, самопроизвольно протекает только в одном направлении

в)DS<0 - процесс самопроизвольно протекать не может, необходим подвод энергии извне.

2-й закон термодинамики с использованием понятия энтропии формулируется так:

Все процессы в природе протекают в направлении увеличения энтропии, энтропия замкнутой системы не может самопроизвольно уменьшаться.

В статистической физике энтропию связывают с термодинамической вероятностью состояния системы – с числом способов, которыми может быть реализовано данное состояние макроскопической системы. Согласно Больцману энтропия системы и термодинамическая вероятность связаны между собой следующим соотношением

S=klnW, (6)


где k – постоянная Больцмана. Энтропия является мерой неупорядоченности системы.

2. Экспериментальная часть

Установка собрана по схеме, показанной на рисунке 2. Она состоит из электронагревателя малой мощности 2 (трубчатая муфельная печь), питание которого осуществляется через понижающий трансформатор 3. В стеклянной пробирке находится небольшой кусочек олова известной массы 1. Пробирка закреплена в штативе и может опускаться в нагреватель или подниматься из него. Температуру олова измеряют дифференциальной термопарой. Она состоит из двух термопар,включенных «навстречу» так, что милливольтметр показывает разность термоЭДС. При этом температура t1«холодного спая» термопары должна быть постоянной и вполне определенной, для чего этот спай термопары рекомендуется погружать в тающий лед. Искомая температура t2 определяется по градуировочному графику этой термопары или с помощью градуировочного коэффициента. Используемая в данной работе термопара в требуемом интервале температур имеет градуировочный коэффициент a =19,5 град/мВ.

Если «холодный» спай термопары находится не в тающем льду, а в воздухе, то к полученным из градуировки результатам необходимо приплюсовать комнатную температуру. В качестве электроизмерительного прибора используется мультиметр, который включается на измерение постоянного напряжения на пределе 200 мV.

В данной лабораторной работе определяется изменение энтропии, происходящее при нагревании и плавлении (или при охлаждении и затвердевании) определенной массы олова.

Возрастание энтропии при нагревании можно объяснить возрастанием энергии колебательного движения атомов олова в кристаллической решетке, что приводит к увеличению возможных микросостояний и, следовательно, к росту энтропии, как меры неупорядоченности системы. При плавлении энтропия системы возрастает дополнительно за счет неупорядоченности пространственного распределения атомов в жидкой фазе.

Если первоначально температура олова равна комнатной, то при подведении теплоты олово сначала нагревается до температуры плавления, потом плавится при постоянной температуре. Изменение энтропии на первом этапе – в процессе нагревания, равно:

(7)