У большинства пленок в функциональной зависимости r(d) наблюдается три различные области.
Область I, соответствующая малой толщине порядка 10-3 мкм, характеризуется очень высоким удельным сопротивлением и отрицательным ar. Пленки имеют островковую структуру. При наличии электрического поля в результате термоэлектрической эмиссии и туннелирования электроны переходят через диэлектрические зазоры между соседними островками. С ростом температуры облегчается переход электронов и падает поверхностное сопротивление проводников. Эти причины и обусловливают отрицательный ar. При увеличении количества осажденного металла величина зазора между островками уменьшается, проводимость пленок растет, модуль ½ar½ уменьшается, а затем он меняет знак. Это происходит при толщине пленки несколько нм .
Область II включает диапазон изменения d от 10-1 до 10-2 мкм. Происходит слияние островков, образование проводящих цепочек и каналов, а затем - сплошного однородного слоя. Но в сплошной пленке присутствует высокая концентрация дефектов - вакансий, дислокаций, границ зерен, примесей остаточных газов, что уменьшает lср и увеличивает удельное сопротивление пленки rs по сравнению с r объемного образца.
Область III характеризует свойства пленок толщиной больше 10-1 мкм, здесь также rs > r.
Используя правило Маттисена можно записать:
rs = rмз + rпр +rр
где rмз - характеризует рассеяние в толщине зерна, rмз=r;
rпр - характеризует рассеяние в прослойке между зернами;
rр - характеризует рассеяние электронов на поверхности пленки.
С ростом температуры величина rмз увеличивается, (ar> 0), rпр уменьшается по экспоненциальному закону (arпр < 0), а значение rр не зависит от температуры. Изменяя технологические режимы нанесения пленок, можно изменять величину температурного коэффициента сопротивления.
Полагая, что процессы рассеяния в объеме и на поверхности пленки статистически независимы, для длины свободного пробега электронов справедливо выражение:
1/ls = 1/lср + 1/ls
где lср и ls - длина свободного пробега при рассеянии в объеме и на поверхности.
Приближенно считая ls = d, получим:
rd=r(1+ lср /d).
Длина свободного пробега ограничивается лишь неупругими столкновениями с поверхностью пленки. Структура пленок при их изготовлении зависит от многих факторов, и пленки одинаковой толщины имеют разную величину rd. Поэтому для сравнительной оценки проводимости пленки пользуются параметром удельное поверхностное сопротивление R, которое численно равно сопротивлению квадратного участка пленки любого размера R = rd/d, Ом/квадрат. Изменяя толщину пленки можно изменять R независимо от удельного сопротивления. Сопротивление тонкопленочного резистора можно рассчитать по формуле:
R = Rl/b,
где l и b - длина и ширина резистора соответственно.
Для изготовления тонкопленочных резисторов применяются пленки с поверхностным сопротивлением 100 - 1000 Ом/квадрат. В качестве резистивных материалов используют тугоплавкие металлы (вольфрам, молибден, тантал, рений , хром) и сплав никеля с хромом. Резисторы из чистых металлов обладают повышенной стабильностью электрических параметров.
6. Контактные явления и термоэлектродвижущая сила
При соприкосновении двух различных металлов между ними возникает контактная разность потенциалов. Причиной этого явления является различная энергия Ферми у сопрягаемых металлов. Так как энергия Ферми в металлах имеет значение порядка нескольких электронвольт, то контактная разность потенциалов между двумя металлами может составлять от десятых долей вольта до нескольких вольт.
Термоэлемент, составленный из двух различных проводников, образующих замкнутую цепь называют термопарой. При различной температуре контактов в замкнутой цепи возникает термоэлектрический ток (эффект Зеебека). В относительно небольшом температурном интервале термо-э.д.с. пропорциональна разности температур контактов (сплавов):
U »aт(Т2 - Т1),
где aт - удельная термо-э.д.с.
Термо-э.д.с. складывается из трех составляющих :
первая из них обусловлена зависимостью контактной разности потенциалов от температуры;
вторая диффузией носителей зарядов от горячих спаев к холодным;
третья увеличением числа свободных электронов квантами тепловой энергии (фононами) к горячему концу.
Величина удельной термо-э.д.с. для металлов оказывается небольшой (несколько мкВ/К) и для одновалентных металлов имеет следующее выражение:
где ЕF - энергия Ферми.
Существенно большее значение удельной термо-э.д.с. можно получить при использовании металлических сплавов (теллуристый висмут Bi2Te3, теллуристый свинец PbTe и др.).
Металлические термопары широко используются для точного измерения температуры.
При пропускании тока через термопару возникает разность температур между контактами (эффект Пельтье). Это явление можно применить в термоэлектрических холодильниках и других устройствах.
Литература
1. Суриков В.С. – Основы электродинамики – М. «Протон» - 2000 г.
2. Карков И.С. – Физика элементарных частиц. – М. – 1999 г.
3. Синджанов И.К. Электродинамика – М. 1998 г.
4. Электротехнические материалы. Справочник / В.Б. Березин, Н.С. Прохоров, А.М. Хайкин. - М.: Энергоатомиздат, 1993. - 504с.
5. Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы . - М.: Радио и связь, 1999. - 352с.