Смекни!
smekni.com

Фізика відкритих систем. Синергетика (стр. 2 из 5)

де H (

) - певна для кожної даної системи функція N змінних, названа гамільтоніаном. Гамільтонова система з дискретним часом (відображення) у самому загальному випадку може бути виражена неявно через одну функцію N змінних F (
), яку називають похідною функцією:

Тут величини, відзначені штрихами, відносяться до наступного моменту дискретного часу.

Що стосується дисипативних систем, то для них характерно, що із часом хмара точок, стискається і концентрується на одному або декількох атракторах – підмножинах фазового простору, що володіють звичайно нульовим фазовим об'ємом (див. рис. 1 (б)). З погляду динаміки в часі, це означає, що режим, що виникає в системі, наданій самій собі протягом тривалого часу, стає незалежним від початкового стану (принаймні, при варіації початкових умов у деяких кінцевих границях).

Прості приклади аттракторів – стійкий стан рівноваги й стійкий граничний цикл – замкнута фазова траєкторія, до якої прямують із часом всі близькі траєкторії. Граничний цикл відповідає, як відомо, режиму періодичних автоколивань.

При наявності у фазовому просторі двох або більше атракторів говорять, що має місце, відповідно, бістабільністъ або мультистабільность. Безліч точок фазового простору, з яких траєкторії приходять врешті-решт до якогось одного атрактора, називається басейном цього атрактора.

Одним з важливих понять теорії динамічних систем являється поняття інваріантної множини. Безліч точок фазового простору називають інваріантним у тому випадку, якщо фазова траєкторія, що стартує з будь-якої його точки, цілком належить цій множині. Будь-який атрактор – це інваріантна множина, але не навпаки. Нестійкі нерухомі точки, нестійкі замкнуті орбіти – це також інваріантні множини. На відміну від атракторів, які мають місце тільки в дисипативних системах, інваріантні множини зустрічаються й у дисипативних, і в консервативних динамічних системах.

Варто чітко усвідомлювати, що поняття динамічної системи є теоретична абстракція, так само як багато інших звичних і корисних наукових абстракцій (матеріальна точка, абсолютно тверде тіло, нестислива рідина, ідеальний газ). Реальні об'єкти можуть розглядатися як динамічні системи тільки в певному наближенні, в тій мірі, у якій при описі динаміки можна ігнорувати тонкі деталі внутрішньої структури системи і її взаємодію з навколишнім світом.

Успіхи класичної механіки в ХVII-ХІХ ст. були настільки вражаючими, що почало здаватися можливим уявляти собі весь Всесвіт як одну гігантську динамічну систему. Ця доктрина, що одержала назву лапласівського детермінізму, виразила в концентрованому виді ідеал наукового пізнання, яким він бачився в ті часи. Знадобився тривалий шлях розвитку науки й наукового світогляду (теорії поля, термодинаміки й статистичної фізики, квантової механіки), щоб переконатися в неспроможності такого уявлення про світ.

Як ми тепер знаємо, ідеал лапласівського детермінізму принципово недосяжний навіть у тому випадку, якщо обмежитися рамками абстракції динамічних систем. Феномен, що яскраво демонструє цю обставину, був відкритий і став загальновідомим в останні кілька десятиліть. Це динамічний хаос. Хаотичні режими характеризуються нерегулярними, схожими на випадкові процеси, змінами динамічних змінних у часі. У дисипативних системах хаос асоціюється з наявністю у фазовому просторі дивних атракторів – складно влаштованих фрактальних множин, що притягують до себе всі траєкторії з деякої прилягаючої області (басейну атрактора).

Можливість хаотичного руху здається на перший погляд несумісною із самим визначенням динамічної системи, заснованому на твердженні про можливості однозначного визначення кінцевого стану по вихідному. Якщо намагатися підійти до проблеми, взявши за відправну точку яку-небудь реальну фізичну систему, то питання здається зовсім непростим. Однак є інший шлях – звернутися до моделей, що представляють собою штучно сконструйовані іграшкові приклади, які свідомо являють собою динамічні системи, допускають детальний теоретичний аналіз й демонструють хаос.

Раніше ми розглядали приклади динамічних систем з хаотичною поведінкою, які сконструйовані штучно. Чи може виникати хаос у фізичних системах або їхніх реалістичних моделях, наприклад, при описі звичними для більшості фізиків диференціальними рівняннями. Класичною стала модель Лоренца.

В 1963 р. американський дослідник Едвард Лоренц, що займався проблемами прогнозування погоди, опублікував у журналі «JournalofAtmosphericSciences» статтю «Детермінований неперіодичний потік». Ця робота була присвячена дослідженню модельної нелінійної системи трьох звичайних диференціальних рівнянь першого порядку, що виходила як результат певних наближень при аналізі задачі про конвекцію шару рідини, що підігрівається знизу. При чисельному розв’язку завдання на комп'ютері виявлялося встановлення в системі хаотичного режиму, що характеризувався складною, неперіодичною зміною динамічних змінних у часі. Проте, цей режим можна розглядати як стаціонарний, оскільки його статистичні характеристики, усереднені за досить великий інтервал часу, залишаються постійними. Цікаво, що система рівнянь Лоренца застосовується не тільки до завдання про конвекцію в шарі, але й до інших систем. До них відносяться одномодова модель лазера, конвекція в трубці, модель водяного колеса, дисипативний осцилятор з інерційним збудженням.

Розглянемо шар рідини глибиною h, що перебуває в полісили тяжіння. Нехай на верхній межі підтримується постійна температура То, а на нижній межі То + ∆Т.

Через те що нагріта рідина легша за холодну, при досить великій різниці температур виникає конвекційний потік рідини, опис якого й становить предмет дослідження. У вихідній постановці задачі ми маємо справу з розподіленою системою – її стан характеризується полями розподілу швидкості v (x, y, z, t), густини (x, y, z, t) і температури Т ((x, y, z, t), що еволюціонують у часі. Зміна цих полів у часі описується системою рівнянь із частковими похідними

(3.1)

де

- векторний оператор Гамильтона (i, j, k- орти прямокутної системи координат), елемент g обумовлений присутністю сили ваги,
- поле тиску,
- коефіцієнт кінематичної в'язкості,
- коефіцієнт температуропровідності,
- коефіцієнт теплового розширення.

Ми хочемо тепер одержати наближений опис, у рамках якого можна було б працювати з скінченномірною динамічною системою. Які можна зробити припущення? По-перше, обмежимося двовимірним заданням. Будемо вважати систему відстані уздовж осі г, перпендикулярною до площини малюнка. Нехай всі змінні величини не залежать від

і
- компонента швидкості відсутня. По-друге, використаємо так назване наближення Бусинеска. Воно полягає в тому, що рідина вважається мало стиснутою й залежність густини від температури враховується в рівняннях тільки в одному місці, у правій частині рівняння для швидкості. Покладемо, що

(3.2)

де

- відхилення поля тисків від гідростатичного тиску
а
- відхилення температури від лінійного профілю, і використаємо в правій частині першого рівняння (3.1) наступне подання:

(3.3)

З огляду на те, що g = -jg , переписуємо рівняння у вигляді:

(3.4)

Корисно помітити, що

, оскільки в другому рівнянні (3.4)
. На верхній і нижній краї шару накладемо граничні умови, що виражають сталість температури й відсутність потоку рідини через границю:

(3.5)

Розпишемо векторні рівняння в координатах, позначаючи

x- і у-компоненти швидкості через u і
. Щоб записати співвідношення для компонентів швидкості, слід відмітити , що з умови нульової дивергенції
випливає, що U та V повинні виражатися через похідні від однієї й тієї ж функції
, яка називається функцією течії: