Припустимо також, що система (1) має стаціонарний розв’язок х°. Природно, що це рішення залежить від керуючого параметру,
. Допустимо далі, що стаціонарна точка системи (1) стійка при до й нестійка при μ> μ0. Отже, при μ = μ0 реальна частина деяких власних значень матриці лінеаризації стає позитивною, тобто перетинає уявну вісь праворуч.Якщо при цьому зміниться топологічна структура розбивки фазового простору системи на траєкторії, то точка μ = μ0 буде точкою біфуркації потоку х(t) динамічної системи (1).
Найбільш відомим прикладом біфуркації стаціонарного стану є біфуркація Андронова - Хопфа, коли стаціонарне рішення х° динамічної системи втрачає стійкість у результаті того, що пара комплексно-сполучених власних значень
матриці лінеаризації переходить в праву на півплощину. При цьому в системі збуджуються періодичні коливання з періодом і відбувається біфуркація народження із спочатку стійкої стаціонарної точки граничного циклу. Якщо в цьому випадку народжений цикл стійкий, то говорять про м'яку втрату стійкості.Інший часто зустрічний механізм біфуркації втрати стійкості стаціонарного стану Х° динамічної системи, - це тверде збудження, коли стійка стаціонарна точка зливається з навколишнім нестійким граничним циклом. У цьому випадку з наближенням керуючого параметру μ до біфуркаційного значення μ0 область притягання стаціонарного стану х° системи одночасно з розмірами граничного циклу зменшується до нуля, і при μ = μ0 цикл зникає, зливаючись із Х° і передаючи йому свою нестійкість. При μ = μ0 всі фазові криві залишають деяку межу точки х.
У цьому випадку реалізується тверда втрата стійкості: при проходженні через до система стрибком переходить на інший режим руху.
Припустимо, що в результаті біфуркації Андронова - Хопфа народився стійкий граничний цикл. Які подальші можливі біфуркації в системі при зміні керуючого параметру? Відповідь на це питання не є однозначною: тут, як і при біфуркації втрати стійкості стаціонарного стану, може реалізуватися декілька випадків. Розглянемо тільки характерні випадках, при реалізації яких подальші біфуркації в системі можуть привести до появи дивного атрактора:
1. Втрата стійкості вихідного циклу й народження інваріантного
двовимірного тора (рис. 7).
2. Народження граничного циклу подвоєного періоду.
Досліджуючи стійкість станів, що відповідають ситуації 1, можна прийти до наступної картини. У результаті біфуркації втрати стійкості граничного циклу у фазовому просторі динамічної системи народжується інваріантний тор. Як і для гамільтонових систем, істотним моментом тут є відношення частот руху уздовж меридіана тору й уздовж його осі. Якщо відношення ірраціональне, тобто не може бути представлене як m/n, де m и n цілі числа, то фазова траєкторія всюди щільно покриває тор. У іншому випадку, тобто при раціональному відношенні частот, у фазовому просторі виникне граничний цикл, що розташований на торі. Поведінка системи в цьому випадку стане періодичною.
З наступною зміною параметра й у фазовому просторі багатомірної динамічної системи може відбутися втрата стійкості двовимірного інваріантного тору й народження тривимірної тороїдальної множини. При цьому поведінка системи характеризується трьома незалежними частотами. Подальша зміна керуючого параметру може привести до послідовності біфуркацій, у результаті яких у фазовому просторі дисипативних динамічних систем виникають інваріантні тори наростаючої розмірності. В кінцевому підсумку ми приходимо до складного квазіперіодичного руху з неспіврозмірними частотами, який при дуже великому μ0 буде виглядати як хаотичний. Вважаючи, що такий шлях розвитку хаосу дійсно можливий, Ландау і незалежно Хопф висунули гіпотезу, відповідно до якої хаотична динаміка дисипативних систем є не що інше, як рух по інваріантному тору великої розмірності. Такий тор буде займати у фазовому просторі область, що відповідає різним наборам початкових фаз, і фазова траєкторія, що намотується на нього, буде із часом проходити практично через будь-яку як завгодно малу частину цієї області.
Квазіперіодичний рух, нехай навіть із дуже більшим числом неспіврозмірних частот, не може бути названий хаотичним, оскільки для такого руху відсутнє розбігання фазових кривих, відповідальне за появу хаотичної динаміки. Крім того, варто сказати, що багатомірний квазіперіодичний притягаючий рух з більшим числом неспіврозмірних частот не є типовим і зустрічається надзвичайно рідко. Під дією завжди присутніх збурень такий рух із часом вироджується в періодичний, що відповідає появі у фазовому просторі граничного циклу, або ж руйнується й дає початок хаотичному режиму. Відзначимо також, що картина Ландау – Хопфа не підтверджується експериментально: після невеликого числа біфуркацій звичайно спостерігається різкий перехід до хаотичного руху.
Вперше на можливість руйнування тороїдальної множини, у результаті якої відбувається народження дивного атрактора, звернули увагу Д. Рюель і Ф. Такенс. Автори досліджували поводження розв’язку динамічної системи при досить загальних припущеннях щодо характеру векторного поля. Ними було показано, що якщо при зміні керуючих параметрів після трьох біфуркацій (починаючи зі стаціонарного стану) виникає трьохчастотний квазіперіодичний рух, то він нестійкий, легко руйнується, і на місці зруйнованого тривимірного тору з'являється дивний атрактор.
Зупинимося на цьому сценарії розвитку хаосу більш детально.
Нагадаємо, що кожна динамічна система, як припускалося вище, задається відповідним векторним полем V. Сукупність всіх можливих векторних полів V утворить деякий функціональний простір Ф. Кожна точка цього функціонального простору відповідає одній з можливих динамічних систем, і навпаки, кожна динамічна система відповідає єдиній точці функціонального простору Ф. Якщо злегка збурити праві частини рівняння, ми одержимо нову динамічну систему, для якої векторне поле буде близьке до вихідного.
При побудові математичної моделі будь-якого реального процесу завжди доводиться прибігати до певних спрощень, зневажати впливом малоістотних факторів і т.п. Отже векторне поле, що входить у праву частину динамічних рівнянь завжди буде відоме лише з якимсь ступенем точності, тобто в межах деякої границі V функціонального простору Ф. Тому очевидно, що якщо розглянута властивість динамічної системи не є структурно стійкою, то для реальних систем вона в експерименті спостерігатися не буде.
Теорема Рюеля й Такенса стверджує, що якщо існує векторне поле V на тривимірному торі, що відповідає трьохчастотному квазіперіодичному рухові, то в будь-якій околиці V відповідної точки функціонального простору Ф найдуться векторні поля в на тривимірному торі, що володіють дивними атракторами. Аналогічне твердження справедливе для квазіперіодичних рухів і на торах більшої розмірності. Інакше кажучи, у принципі достатньо слабко обурити праві частини системи, щоб рух із квазіперіодичного із трьома неспіврозмірними частотами перейшов в хаотичний. Однак це виконується не для всіх векторних полів.
Деякі експериментальні дані свідчать про те, що сценарій переходу до хаосу Рюэля - Такенса, очевидно, дійсно виконується для ряду систем. Були проведені експерименти по дослідженню конвекції Рэлея -Бенара в горизонтальному шарі. Зі збільшенням градієнта температури перед переходом до хаотичного руху в спектрі швидкості рідини спостерігалася спочатку одна, а потім дві незалежні частоти. Хаотичний режим, що характеризується суцільним спектром, з'являвся відразу слідом за квазіперіодичною двохчастотною течією.
Знання основних закономірностей утворення структур в активних середовищах, а також у мережах, що складаються з великої кількості активних елементів, дозволяє перейти до цілеспрямованого створення розподілених динамічних систем, які формують ті або інші просторові структури. Одним з основних застосувань при цьому є завдання аналогової обробки інформації. Використання як елементів обробки інформації не окремих сигналів, а протяжних просторових структур дає можливість різко підвищити ефективність комп'ютера в проблемах розробки штучного інтелекту. Є ряд свідчень, що саме аналогові механізми лежать в основі роботи людського мозку. Людський мозок – це гігантська мережа з десятків мільярдів нервових клітин – нейронів, зв'язаних між собою відростками (дендритами й аксонами). Число зв'язків одного нейрона може досягати десятків тисяч. Завдяки роботам нейрофізіологів досить добре відомий механізм дії окремого нейрона. Нервова клітина здатна перебувати в одному із трьох дискретних станів – спокою, збудження й рефрактерності (стану незбудливості). Переходи між станами керуються як процесами всередині самої клітини, так й електричними сигналами, що надходять до неї по відростках від інших нейронів. Перехід від стану спокою до збудження відбувається пороговим методом при майже одночасному надходженні досить великої кількості імпульсних сигналів збудження. Перейшовши у збуджений стан, нейрон перебуває в ньому протягом певного часу, а потім самостійно переходить у стан рефрактерності. Цей стан характеризується дуже високим порогом збудження: нейрон практично не здатний реагувати на находжені до нього сигналів збудження. Через якийсь час здатність до збудження відновлюється й нейрон повертається в стан спокою.