Смекни!
smekni.com

Фізика напівпровідників (стр. 12 из 25)

. (5.63)

Звідси

, (5.64)

що відповідає експериментальним вимірюванням. Оскільки електрон віддає довільну частину своєї енергії, то поява електромагнітного випромінювання різних довжин хвиль цілком зрозуміла.

При достатньо великій швидкості електронів, крім гальмівного випромінювання, виникає також характеристичне випромінювання. Воно зумовлене збудженням внутрішніх електронних оболонок атомів. Рентгенівський спектр характеристичного випромінювання – дискретний.

§ 5.11. Елементи теорії відносності (релятивістська механіка)

Рух тіл зі швидкостями значно меншими від швидкості світла у вакуумі (

описується законами класичної механіки.

Розглянемо будь-які дві інерціальні системи відліку К і

(мал.5.25). Перетворення координат Галілея для переходу від однієї інерціальної системи відліку
до іншої К(х,у,z) у випадку, показаному на мал.5.25, мають вигляд:

(5.65)

де v0 – швидкість руху системи

відносно К (при t=0 початки координат систем відліку співпадають). З перетворень координат Галілея випливає правило додавання швидкостей
(5.66)

де

– швидкість тіла у системі К,
– його швидкість у системі відліку

Величини відрізків і проміжки часу при переході від однієї системи відліку до іншої не змінюються:

(5.67)

В класичній механіці простір і час розглядаються незалежно один від одного. Механічні закони незмінні (інваріантні) при переході від однієї системи відліку до іншої. Інваріантність законів механіки відносно перетворень координат Галілея є математичним виразом механічного принципу відносності: у різних інерціальних системах відліку всі механічні процеси при рівних умовах протікають однаково, тобто всі інерціальні системи відліку рівноправні між собою.

Якщо швидкість тіл наближається до швидкості світла у вакуумі, то закони класичної механіки перестають бути справедливими. У цьому випадку слід користуватись спеціальною теорією відносності – релятивістською механікою.

Спеціальна теорія відносності грунтується на двох постулатах Ейнштейна. Перший постулат: всі закони природи інваріантні при переході від однієї інерціальної системи відліку до іншої. Ейнштейн, фактично, поширив механічний принцип відносності Галілея на всі фізичні явища. Другий постулат: швидкість світла у вакуумі однакова у всіх інерціальних системах відліку і не залежить від руху джерел і приймачів світла.

Ці два принципи являють собою основу спеціальної теорії відносності, яка, в свою чергу, є теорією простору і часу.

В спеціальній теорії відносності замість перетворень Галілея слід користуватись перетвореннями Лоренца. У простому випадку, коли координатні осі 0Х і

співпадають, перетворення координат Лоренца мають вигляд:

(5.68)

Зауважимо, що перетворення Лоренца при v<<cпереходять у перетворення Галілея.

З перетворень Лоренца випливають два важливих наслідки. По-перше, довжина тіла l, виміряна в системі (К), відносно якої воно рухається, виявляється меншою довжини тіла l0, виміряної в системі (

), відносно якої тіло нерухоме

. (5.69)

Систему відліку (

, відносно якої тіло нерухоме, називають власною системою відліку.

По-друге, власний проміжок часу

менший проміжку часу
, відрахованого за годинником, який рухається відносно тіла

. (5.70)

Власний час

відраховується за годинником системи відліку, яка рухається разом з тілом.

Залежність маси m від швидкості його руху дається рівнянням:

m

, (5.71)

де m0 – маса спокою тіла.

Динаміка руху тіла в релятивістській механіці описується рівнянням

, (5.72)

де

(5.73)

є релятивістський імпульс.

Між повною енергією тіла і його релятивістською масою існує взаємозв’язок,

W=mc2. (5.74)

Цю залежність називають законом взаємозв’язку маси і енергії.

Енергію W0=m0c2 (5.75)

називають енергією спокою тіла.

Кінетична енергія тіла

(5.76)

У випадку малих швидкостей ця формула переходить у відомий вираз

. (5.77)

Зв’язок між повною енергією та імпульсом

. (5.78)

Головний висновок теорії відносності: простір і час органічно взаємно пов’язані і утворюють єдину форму існування матерії – простір-час. Саме тому просторово-часовий інтервал між двома подіями – абсолютний (однаковий у всіх інерціальних системах):

(5.79)

Окремо взяті просторові і часові проміжки між подіями – відносні.

Таким чином, перетворення Лоренца і всі висновки, які з них випливають, визначають об’єктивно існуючі просторово-часові співвідношення рухомої матерії.


Розділ VI. Елементи атомної фізики, квантової механіки і фізики твердого тіла.

§ 6. 1. Ядерна модель атома. Воднеподібний атом Бора. Спектральні серії

Оскільки світло випромінюється і поглинається атомами речовини, то виникає питання: яка структура атомів забезпечує квантовий (дискретний) характер вказаних процесів? Відповідь на це питання дав Резерфорд (1911р), аналізуючи результати експериментального дослідження розсіяння

-частинок на тонких металічних плівках. Він запропонував ядерну модель атома, згідно з якою в центрі атома
розміщене позитивно заряджене ядро
, в якому сконцентрована практично вся маса атома. Навколо ядер по колових чи еліптичних орбітах рухаються електрони. Якщо в нейтральному атомі Zелектронів, то заряд ядра
, де
– елементарний заряд.

Рух електрона по орбіті є прискореним. І тому, з точки зору класичної фізики, електрон, що рухається прискорено, повинен випромінювати електромагнітні хвилі, втрачати енергію і кінець кінцем впасти на ядро. Але атом – стійка система електричних зарядів. І тому, приймаючи ядерну модель атома, потрібно відмовитись від класичного опису орбітального руху електронів.

Перший крок в цьому напрямку зробив Н. Бор (1913 р.), сформулювавши наступні постулати:

а) із усіх можливих механічних станів (орбіт) електрона в атомі здійснюються лише такі, для яких момент імпульсу орбітального руху електрона кратний до постійної Планка h, тобто

, (6.1)

де

– квантове число стану (номер орбіти), а
– постійна Дірака; такі стани (орбіти) називаються стаціонарними;

б) перебуваючи в стаціонарному стані, електрон атома не випромінює і не поглинає енергії;

в) при переході з одного стаціонарного стану на інший (мал.6.1) електрон випромінює (поглинає) квант світла з енергією, рівною різниці енергій цих станів, тобто

. (6.2)