Смекни!
smekni.com

Фізика напівпровідників (стр. 15 из 25)

§ 6.5. Квантовий лінійний гармонічний осцилятор

Лінійний гармонічний осцилятор – це матеріальна точка, яка здійснює рух вздовж осі х під дією квазіпружної сили

. Потенціальна енергія осцилятора (мал.6.5):

, (6.26)

де m – маса осцилятора,

– його власна циклічна частота, х – зміщення від положення рівноваги. Підставляючи (6.26) в рівняння Шрьодінгера (6.20), отримаємо

. (6.27)

Розв’язок цього рівняння, виражений через поліноми Чебишева-Ерміта, задовільняє стандартні вимоги до хвильових функцій лише тоді, коли енергія осцилятора квантується за законом

, (6.28)

де

=0,1,2,… – коливальне квантове число.

Відмітимо, що найменша енергія квантового осцилятора при

=0, так звана нульова енергія, на відміну від класичного осцилятора не дорівнює нулю. Наявність нульових коливань підтверджується експериментально фактом розсіяння світла кристалами при дуже низьких температурах.

Перебуваючи в певному квантовому стані, осцилятор не поглинає і не випромінює енергії. Випромінювання (поглинання) енергії відбувається при переході осцилятора між квантовими станами, при цьому дозволяються (правила відбору) переходи лише між сусідніми енергетичними рівнями (мал.6.5), тобто

. Енергія випромінюваного (поглинутого) кванту
, що підтверджує квантовий постулат Планка.

§ 6.6. Воднеподібні атоми в квантовій механіці. Квантові числа електрона в атомі

Потенціальна енергія електрона в кулонівському полі ядра воднеподібного атома має вигляд

, (6.29)

де r – відстань від центру ядра.

З врахуванням (6.29) стаціонарне рівняння Шрьодінгера (6.20) запишеться як

. (6.30)

Оскільки кулонівське поле володіє центральною симетрією, то зручно перейти до сферичних координат, де положення довільної точки описується однією лінійною координатою (r) і двома кутовими (

. В цьому випадку у хвильовій функції електрона можна провести розділення змінних:

.

Стандартні вимоги як до хвильової функції в цілому, так і до окремих складових виконуються лише при певних (дискретних) значеннях не тільки енергії електрона Еn, але і квадрату моменту імпульсу його орбітального руху

, а також проекції цього моменту
на вибраний напрямок (вісь z). Квантування вказаних характеристик визначається трьома квантовими числами: головним n, орбітальним (азімутальним)
та магнітним
наступним чином:

, (6.31)

де n=1,2,3,…; відмітимо, що (6.31) співпадає з (6.4) для борівського воднеподібного атома;

, (6.32)

де

=0,1,2,…, n-1;

, (6.33)

де

=0,
.

Оскільки енергія електрона Еnвизначається лише головним квантовим числом n, а хвильова функція

– трьома квантовими числами, то декільком станам з різними
та
відповідає одне значення енергії. Така ситуація називається квантовомеханічним виродженням. Наприклад, енергія Е2 реалізується в чотирьох станах з хвильовими функціями
. В загальному, кратність виродження дорівнює n2 . Традиційно, стани з різними
позначаються наступними буквами:

: 0, 1, 2, 3, …

стан: s, p, d, f, …

Для попереднього прикладу енергія Е2 реалізується в станах 2si 2p.

Основний стан (1s) є невиродженим і описується хвильовою функцією

. (6.34)

Для цього стану імовірність перебування електрона в сферичному шарі одиничної товщини на відстані rвід центру ядра

~
. (6.35)

Як видно з мал.6.6, де представлена залежність

, максимальна імовірність реалізується на відстанях, рівних борівському радіусу а0 . Отже, борівські траєкторії можна інтерпретувати в квантовій механіці як геометричне місце точок з максимальною імовірністю перебування електрона. Хоч в дійсності його заряд “розмазаний” по всьому об’єму атома.

§ 6.7. Власний момент (спін) електрона. Принцип Паулі. Забудова складних атомів. Характеристичне рентгенівське випромінювання

Орбітальний рух електрона в атомі можна розглядати як коловий струм, з яким пов’язаний магнітний момент

. Проекція цього моменту на вибраний напрямок, який задається магнітним полем індукцією В,

, (6.36)

де mел – маса електрона,

– магнітне квантове число. В s-стані
=0, і тому такий електрон не повинен володіти магнітним моментом, що суперечить ряду експериментальних спостережень. І тому була висунута

(1925 р.) гіпотеза про те, що електрони володіють власним, не пов’язаним з просторовим переміщенням, моментом імпульсу і відповідним магнітним моментом. Ця властивість електронів була названа спіном. Спіновий момент імпульсу електрона визначається формулою

, (6.37)

де s– cпінове квантове число, рівне

.

Проекція цього моменту на вибраний напрямок (наприклад, напрямок магнітного поля)

, (6.38)

де ms=

–магнітне спінове число.

Пізніше виявилось, що спіном володіють усі мікрочастинки. При цьому частинки з напівцілим спіном

утворюють клас ферміонів (електрони, протони, нейтрони тощо), а частинки з цілим спіном (s=0,1,…) утворюють клас бозонів (фотони, мезони тощо). Для ферміонів справедливий принцип Паулі: два тотожні ферміони не можуть одночасно перебувати в однаковому стані.

В багатоелектронних атомах стан кожного електрона описується четвіркою квантових чисел: n,

,
, ms. Принцип Паулі в цьому випадку гласить: в атомі не може бути двох електронів з ідентичним набором чотирьох квантових чисел. Електрони, які мають однакове головне квантове число n, утворюють шар. Максимальна кількість електронів у шарі визначається формулою 2n2. Класифікація шарів: К(n=1), L(n=2), M(n=3), N(n=4) тощо. Електрони з однаковими квантовими числами ni
утворюють оболонку. Максимальна кількість електронів в оболонці визначається формулою 2(2
+1). Класифікація оболонок: s(
=0), p(
=1), d(
=2), f(
=3) тощо.