f(Е)=A(T)
. (6.55)Електронний газ, що описується таким розподілом, називається невиродженим газом. В цей же час електронний газ, що описується розподілом Фермі-Дірака, називається виродженим. Критерієм виродження є нерівність
, (6.56)тобто виродження має місце при високій концентрації електронів, малій їх ефективній масі та низьких температурах. В металах електронний газ завжди вироджений (n
, в напівпровідниках, як правило, невироджений (n< .В металах при низьких температурах концентрація електронів зони провідності, енергія яких лежить в інтервалі
,dn(E)=2dg(E),
де dg(E) – кількість енергетичних рівнів у вказаному інтервалі. Якщо справедливий параболічний закондисперсії (6.53), то нескладний розрахунок дає
. (6.57)Тоді повна концентрація носіів в с-зоні металу при низьких температурах
(6.58)і від температури не залежить. Енергія Фермі
, (6.59)що дає
при . Середня енергія зонних електронів в металах , що значно більше к0Т.А це означає, що лише незначна кількість електронів, що перебувають на рівнях, близьких до рівня Фермі, може змінити свою енергію при зміні температури. Таким чином, електронний газ в металах практично не вносить вкладу в теплоємність кристалу (див. § 6.8), незважаючи на високу загальну концентрацію електронів.
В напівпровідниках рівень Фермі, як правило, лежить в забороненій зоні (мал.6.13), і тому при розрахунку концентрації невироджених електронів в зоні провідності потрібно врахувати, що функція розподілу (6.55) в усьому діапазоні енергій Е>Ec менша від одиниці і залежить від температури. І тому
, (6.60)де Аn– множник, який слабо залежить від температури і визначається ефективною масою носіїв, а Еg – ширина забороненої зони.
Як слідує з (6.60) з ростом температури концентрація зонних (вільних) електронів збільшується за експоненційним законом. Ця формула справедлива лише для бездомішкового, т.з. власного, напівпровідника. Зрозуміло (див. мал. 6.13), що концентрація дірок у валентній зоні дорівнює концентрації електронів в зоні провідності: n=p=ni – власна концентрація носіїв струму.
Ситуація радикально змінюється, коли в напівпровідник ввести домішки. Зокрема, коли вводяться донорні домішки, тобто домішки, які легко віддають електрони в С-зону, то n>>p; такий домішковий напівпровідник називається електронним (n-типу). Якщо ж вводяться акцепторні домішки, тобто домішки, які легко захоплюють електрони з V-зони, то p>>n; такий домішковий напівпровідник називається дірковим (р-типу). В класичних напівпровідниках GeiSiв ролі донорних домішок виступають As, P, а акцепторних – Ga, Іn.
§ 6.11. Електричні властивості металів і напівпровідників
Відомо (розділ ІІІ), що густина електричного струму в провідниках (металах, напівпровідниках, електролітах тощо) визначається зарядом носіїв, їх концентрацією n та середньою швидкістю напрямленого (впорядкованого) руху <
, зумовленого електричним полем напруженістю . Якщо носіями струму є електрони, то густина струму (j=j=en<un> . (6.61)
В слабких електричних полях, де виконується закон Ома, швидкість напрямленого руху лінійно залежить від напруженості електричного поля, тобто
, (6.62)де
– рухливість електронів.Підставляючи (6.62) в (6.61), отримаємо
, (6.63)тобто закон Ома в диференційній формі, де
– (6.64)питома електропровідність електронного провідника (металу, напівпровідника n-типу).
Питома електропровідність власного напівпровідника
, (6.65)де
– рухливість дірок.Рухливість носіїв визначається так званим часом релаксації
, який формально можна розглядати як проміжок часу між двома послідовними актами зіткнення (розсіяння) носіїв з недосконалостями кристалу. Основними недосконалостями (відхиленнями від ідеальності) є коливання кристалічної гратки (фонони) і домішки кристалу. В рамках вказаного формалізму середній час релаксації носіїв , (6.66)де
– середня довжина вільного (між двома послідовними зіткненнями) пробігу носіїв, < > – середня швидкість теплового (хаотичного) руху носіїв.Строга квантова теорія дає
. (6.67)Підставляючи (6.67) у (6.64), отримаємо для питомої електропровідності металів
. (6.68)Оскільки в металах концентрація носіїв (електронів у С-зоні) від температури не залежить, то залежність питомої електропровідності визначається лише відношенням
. Виявляється, що, за винятком дуже низьких температур, .І тому , а питомий опір , у відповідності з відомим експериментальним законом . Відмітимо, що при оціночних розрахунках можна покладати .Принципово інша ситуація в напівпровідниках, де концентрація носіїв експоненційно залежить від температури (6.60). Рухливість носіїв в напівпровідниках також залежить від температури, але за слабшим, степеневим законом:
, (6.69)де
при різних температурах приймає значення від –1,5 до +1,5. Підставляючи (6.60) та (6.69) у (6.65), отримаємо вираз для питомої електропровідності власного (n=p) напівпровідника , (6.70)де передекспоненційний множник В можемо наближено вважати від температури незалежним. Узагальнюючи (6.70) на випадок домішкового напівпровідника, запишемо
, (6.71)де
а – енергія активації провідності, яка у власному напівпровіднику дорівнює , а в домішкових напівпровідниках має зміст енергії іонізації донорів чи акцепторів. Отже, питома електропровідність напівпровідників експоненційно збільшується з ростом температури, чим останні принципово відрізняються від металів.Розділ VII. Фізика ядра та елементарних часток.
§ 7.1. Склад і характеристики ядра
Ядро атома, як центральну позитивно заряджену масивну частину атома, навколо якої рухаються електрони, відкрив англійський фізик Е.Резерфорд на основі своїх дослідів по розсіюванню
- частинок речовиною (1911 р). Позитивний заряд ядра чисельно рівний сумі негативних зарядів електронів нейтрального атома. За обрахунками Резерфорда радіус ядра rя~10-15м (радіус атома ra~10-10м). Плідність ядерної моделі атома підтвердила теорія атома водню Н.Бора (1913 р). Після того, як Г. Мозлі (1913 р) експериментально показав, що позитивний заряд ядра ,(7.1)де Z – порядковий номер елемента в таблиці Менделєєва, а е – елементарний електричний заряд, чисельно рівний зарядові електрона (
, уявлення про ядро атома стало загальноприйнятим.