Смекни!
smekni.com

Фізика напівпровідників (стр. 2 из 25)

Історично склалось так, що поле макрострумів характеризується іншою характеристокою – напруженістю магнітного поля (

). В системі СІ індукція та напруженість магнітного поля мають різні одиниці вимірювання:
; між цими двома характеристиками магнітного поля існує зв’язок

, (4.7)

де

– магнітна стала.

Для графічного зображення магнітного поля використовують лінії магнітної індукції, які проводяться так, щоб дотична до них в кожній точці співпадала з напрямком

в цій точці. Лінії магнітної індукції проводяться з такою густиною, щоб число ліній, які перетинають нормальну до них площадку одиничної площі чисельно дорівнювало
в даному місці простору. Лінії магнітної індукції не мають ні початку, ні кінця, вони або замикаються навколо провідників зі струмом, або ідуть з нескінченності в нескінченність. Їх напрямок встановлюється згідно з правилом свердлика (див.мал.4.3, 4.4).

Магнітне поле прямолінійного Магнітне поле довгого соленоїда нескінченно довгого провідника зі зі струмом.

Магнітне поле називається однорідним, якщо у всіх його точках

. Лінії індукції однорідного поля – паралельні прямі, проведені з однаковою густиною. Однорідним є поле всередині нескінченно довгого соленоїда (мал.4.4).

§ 4.2. Закон Біо-Савара-Лапласа для елемента струму. Магнітне поле прямолінійного та колового струмів

Закон Біо-Савара-Лапласа встановлює індукцію магнітного поля, створеного елементом струму

в певній точці простору:

(4.8)

або, у скалярній формі,

(4.9)

де

– радіус-вектор, проведений від елемента струму до даної точки;
– кут між елементом струму
і радіусом-вектором
. Напрямок
визначається за правилом свердлика (мал.4.5).

Індукцію поля, створеного в даній точці простору всім провідником, знаходимо за принципом суперпозиції:

(4.10)

Закон Біо-Савара-Лапласа та принцип суперпозиції дозволяють отримати вирази для магнітних полів, створених провідниками різних конфігурацій. Зокрема:

а) магнітне поле скінченного прямолінійного струму в точці простору на відстані R від провідника (мал.4.6)

, (4.11)

б) магнітне поле нескінченно довгого струму в точці простору на відстані Rвід провідника (мал. 4.7)

, (4.12)

в) магнітне поле в центрі колового струму (мал.4.8)

. (4.13)

§ 4.3. Теорема про циркуляцію вектора

. Поле соленоїда

Циркуляцією вектора

по деякому замкненому контуру l називається інтеграл виду

(4.14)

де

– проекція вектора
на напрямок дотичної до елемента контура dl. Ця фізична величина описується однойменною теоремою:

циркуляція вектора напруженості магнітного поля по довільному замкненому контуру дорівнює алгебраїчній сумі всіх струмів, охоплених цим контуром,

. (4.15)

За допомогою цієї теореми можна розрахувати напруженість магнітного поля всередині довгого соленоїда (мал.4.4):

, (4.16)

де

– число витків на одиниці довжини соленоїда.

Індукція магнітного поля всередині соленоїда

, (4.17)

де

– магнітна проникність осердя.

§ 4.4. Дія магнітного поля на струм, закон Ампера. Сила Лоренца

Нехай у магнітному полі з індукцією

знаходиться лінійний елемент струму
. На цей елемент з боку поля діє сила, величина і напрямок якої визначаються законом Ампера:

(4.18)

або, в скалярній формі,

, (4.19)

де

– кут між напрямком струму в провіднику і напрямком магнітного поля. Сила, що діє на провідник зі струмом скінченної довжини, знаходиться з (4.18) або (4.19) інтегруванням по всій довжині провідника:

, (4.20)

або

. (4.21)

Зокрема, для прямолінійного провідника в однорідному магнітному полі

(4.22)

Напрямок сили Ампера можна знаходити за правилом лівої руки (мал. 4.9).

На електричний заряд, що рухається в магнітному полі, діє сила, перпендикулярна як до швидкості заряду, так і до ліній магнітної індукції; вона називається силою Лоренца і визначається за формулою

(4.23)

або, в скалярній формі,

, (4.24)

де

– кут між швидкістю заряду
і напрямком
.

Для позитивного заряду напрямок сили Лоренца визначається за правилом лівої руки (мал.4.10). Якщо заряд негативний, напрямок сили Лоренца буде протилежним. Відмітимо окремо, що на нерухомий заряд магнітне поле не діє. В цьому – його принципова відмінність від електричного поля.

§ 4.5. Магнітна взаємодія струмів

Як відмічалось у § 4.4, на провідник зі струмом, вміщений в магнітне поле, діє сила Ампера. Зокрема, така сила буде діяти на провідник зі струмом з боку магнітного поля іншого струму. На мал.4.11 зображені два паралельних нескінченно довгих провідники зі струмами. На струм

діє сила Ампера з боку магнітного поля, створеного струмом

. (4.25)

(

– індукція поля першого струму на віддалі Rвід нього). Аналогічно, на перший струм з боку магнітного поля другого струму діє сила

. (4.26)

Напрямки сил

і
знайдені за правилом лівої руки і вказані на мал.4.11. Порівнюючи (4.25) та (4.26), а також врахувавши напрямки
та
, можна записати
, що узгоджується з третім законом Ньютона.

Якщо струми в провідниках будуть напрямлені антипаралельно, то напрямки сил взаємодії зміняться і провідники будуть відштовхуватись один від одного.

Отже, сила взаємодії двох паралельних провідників зі струмами

. (4.27)