Смекни!
smekni.com

Фізика напівпровідників (стр. 22 из 25)

, (7.28)

що є, фактично, оберненням реакції (7.23).

Важливим для практичних застосувань радіоактивності є поняття активності радіоактивного препарату. Під активністю радіоактивного зразка розуміють число розпадів, які відбуваються в ньому за одиницю часу

. (7.29)

З (7.15) випливає, що

, (7.30)

тобто активність змінюється з часом за законом

, (7.31)

де

– активність при
. Одиницею активності в системі СІ є Ібеккерель (Бк), що відповідає одному розпадові за секунду. Позасистемними одиницями активності є Ік’юрі (Кі) та Ірезерфорд (Рд); ІКі
Бк, ІРд
Бк. За відомою активністю може бути розрахована експозиційна доза радіації та поглинута доза (енергія йонізуючого випромінювання, розрахована на одиницю маси поглинаючої речовини). Для вимірювання експозиційної та поглинутої доз використовуються прилади різних типів – дозиметри.

§ 7.4. Ядерні реакції

Ядерні реакції – перетворення ядер при їх взаємодії з легкими частинками або іншими ядрами. Така взаємодія виникає при зближенні реагуючих часток до відстаней ~10-13см. Найбільш поширеним типом ядерної реакції є взаємодія легкої частинки a з ядром Х, в результаті якої утворюється легка частинка b і ядро Y

, (7.32)

що скорочено позначають Х(а,b)Y. В якості легких часток можуть фігурувати: нейтрон, протон, дейтон,

-частинка,
-квант. Ядерні реакції–основний метод вивчення структури ядра і його властивостей.

У будь-якій ядерній реакції виконуються закони збереження зарядового і масового чисел, а також енергії, імпульсу та момента імпульсу. Енергію реакції можна розрахувати на основі формули (7.7), де дефект маси реакції

визначається співвідношенням

. (7.33)

Якщо

енергія виділяється; якщо
енергія поглинається.

Тип ядерної реакції залежить від енергії бомбардуючих часток. При малих енергіях реакція здійснюється в два етапи (Н. Бор, 1936 р.). На першому етапі ядро Х захоплює частинку а, в резулттаті чого виникає збуджене проміжне компаунд-ядро П. На другому етапі ядро П випромінює частинку b і перетворюється в ядро Y; в цілому процес має вигляд

. (7.34)

Середній час життя компаунд-ядра складає (10-15–10-16)с, він значно більший часу проходження нуклоном ядра

c, тому захоплення частинки а і випромінення частинки b – незалежні процеси. Якщо
, процес (7.34) називають розсіюванням; власне ядерна реакція має місце, якщо
. При енергії збудження ядра П, яка менша необхідної для відокремлення від нього часток, єдиний шлях його розпаду – випромінювання
-квантів; такий процес називають радіаційним захопленням. При великих енергіях бомбардуючих часток проміжне ядро не утворюється, процес має вигляд (7.32) і носить назву прямої ядерної взаємодії.

Ймовірність різних взаємодій в ядерній фізиці прийнято характеризувати за допомогою ефективного перерізу взаємодії

, (7.35)

де N – потік часток, що падають на деяку мішень,

– число часток, які зазнають взаємодії, d – товщина мішені, n – концентрація ядер мішені. Ця величина характеризує ймовірність взаємодії в розрахунку на одне ядро в шарі одиничної товщини. Її прийнято вимірювати в барнах:1барн=10-24см2.

Велике значення мають реакції, які викликаються нейтронами. Із-за відсутності електричного заряду нейтрону не доводиться долати потенціальний бар’єр ядра, тому в ядра легко проникають навіть теплові нейтрони з енергією Е~0,03еВ. Звичайно для захоплення нейтронів має місце монотонна залежність

, однак спостерігаються випадки резонансного захоплення нейтронів. Так, для
різко зростає при Е=7еВ, досягаючи 23000 барн. Таке резонансне поглинання має місце, коли енергія, внесена нейтроном в ядро, рівна тій, яка необхідна для його переводу на збуджений енергетичний рівень.

Важливу групу ядерних реакцій складають реакції ділення важких ядер при їх бомбардуванні нейтронами (О.Ган, Р.Штрасман, О.Фріш, Л. Мейтнер, 1939 р.). При цьому ядро ділиться на декілька більш легких ядер (найчастіше – на два осколки зі співвідношенням мас 2:3) з випроміненням 2-3 вторинних нейтронів і виділенням величезної енергії (~ІМеВ на нуклон), наприклад,

. (7.36)

Мінімальна енергія, необхідна для поділу ядра, називається енергією активації; її вносить в ядро бомбардуючий нейтрон. Це приводить до деформації ядра внаслідок порушення рівноваги кулонівських сил і сил поверхневого натягу, поділу ядра і розлітання осколків з великими швидкостями (Н.Бор, Я.І.Френкель, 1940 р.). Осколки виносять понад 80% енергії ділення, декілька МеВ виносять нейтрони, решта енергії виділяється пізніше під час

-розпаду продуктів ділення.

Оскільки відношення числа нейтронів до числа протонів

для середніх ядер рівне 1,3, а для важких ядер – 1,6, звільнення осколків від надлишку нейтронів і приводить до виникнення вторинних нейтронів. Переважна більшість з них виникає в момент ділення (миттєві нейтрони); однак, 0,75% вторинних нейтронів виникають з запізненням (запізнілі нейтрони). Вони “випаровуються”
-радіоактивними осколками вже після ділення ядра з розкидом в часі від 0,05с до десятків секунд. Саме це дозволяє плавно керувати ланцюговою реакцією ділення.

Ядерна реакція стає ланцюговою, якщо частинки, що її викликають, виникають як продукти цієї реакції. В реакції типу (7.36), викликаній тепловим нейтроном, вторинні нейтрони виникають швидкими в середній кількості

на кожний акт ділення. Якщо частина f загальної кількості вторинних нейтронів буде використана для продовження реакції ділення, то на один нейтрон першого покоління прийдеться

(7.37)

нейтронів другого покоління, тому швидкість зміни потоку нейтронів

і

, (7.38)

де n0-потік нейтронів при

,
-час життя покоління нейтронів. Якщо
, здійснюється самопідтримувана ланцюгова реакція, що має місце в ядерних реакторах. При
реакція перестає бути регульованою і закінчується вибухом; при
ланцюгова реакція згасає.

Вивчення можливостей реалізації цих умов показало, що природній уран містить ~99,3% ізотопу

і ~0,7% ізотопу
. Ядра
діляться як швидкими, так і тепловими нейтронами, ядра
діляться лише швидкими нейтронами з енергією Е > 1МеВ, але ефективний переріз поділу
для них малий. Конкуруючими процесами є непружне розсіяння і радіаційне захоплення нейтронів, тому в природньому урані ланцюгова реакція ділення самочинно розвинутись не може. Якщо природній уран збагатити ізотопом
, то на швидких нейтронах реалізується співвідношення типу (7.37):