Смекни!
smekni.com

Фізика напівпровідників (стр. 4 из 25)

Провідник зі струмом завжди оточений магнітним полем, причому магнітне поле з’являється і зникає разом із виникненням та зникненням електричного струму. Оскільки магнітне поле, як і електричне, володіє енергією, то очевидно, що енергія магнітного поля дорівнює роботі, виконаній джерелом при створенні цього струму.

Розглянемо контур індуктивністюL, по якому тече струм силою І. Власний магнітний потік

. При зміні сили струму на dIмагнітний потік змінюється на dФ
. При цьому, згідно (4.32), джерело струму виконує роботу
.

Проінтегрувавши останній вираз, отримаємо

.

Отже, енергія магнітного поля контура

. (4.42)

Знайдемо тепер енергію магнітного поля всередині довгого соленоїда. Підставивши (4.38) у (4.42), отримаємо

.

Враховуючи, що об’єм магнітного поля практично співпадає з об’ємом соленоїда

, а напруженість магнітного поля в соленоїді
, останній вираз запишемо у вигляді

. (4.43)

Введемо тепер поняття густини енергії магнітного поля як енергії одиниці об’єму поля

. (4.44)

Підставивши (4.43) у (4.44), для густини енергії магнітного поля одержимо

. (4.45)

Формула (4.45), виведена для однорідного поля всередині соленоїда, лишається справедливою для будь-якого магнітного поля.

§ 4.10. Магнітне поле в речовині

У всіх тілах, що знаходяться в магнітному полі, виникає результуючий магнітний момент. Це явище називають намагнічуванням, а відповідне тіло – магнетиком.

Магнітне поле в магнетику складається з двох частин: поля макрострумів, що течуть по провідниках, з індукцією

і власного поля
, створеного мікрострумами середовища. Індукція результуючого магнітного поля в магнетику
.

В молекулах речовини циркулюють замкнені струми; кожен такий струм має магнітний момент; у відсутності зовнішнього магнітного поля молекулярні струми, внаслідок теплового руху молекул, орієнтовані хаотично і створене ними середнє поле дорівнює нулю. У зовнішньому полі магнітні моменти молекул орієнтуються переважно вздовж напрямку

( в деяких речовинах, так званих діамагнетиках,– проти зовнішнього поля), внаслідок чого речовина намагнічується. Кількісною характеристикою намагнічування речовини є вектор намагнічування (
), рівний векторній сумі магнітних моментів
усіх молекул в одиниці об’єму речовини:

. (4.46)

Вектор намагнічування пропорційний напруженості магнітного поля:

. (4.47)

Коефіцієнт пропорційності

називається магнітною сприйнятливістю; це безрозмірна величина, що залежить від природи магнетика.

Величини

,
,
, а також
і
зв’язані між собою:

;
;
;
.

Крива залежності В (Н) називається кривою намагнічування.

Речовини, для яких

,
, називаються парамагнетиками (
;
;
; FeCl
).

Речовини, для яких

,
, називаються діамагнетиками (
;
; Zn;
;
; He; Аr; Сr; Ne).

Речовини, для яких

, називаються феромагнетиками (Fe; Со; Ni).

Феромагнетики відрізняються від парамагнетиків і діамагнетиків рядом властивостей:

а) крива намагнічування феромагнетика має складний характер (мал. 4.18), тоді як для парамагнетиків вона являє собою пряму з додатнім кутовим коефіцієнтом, а для діамагнетиків – пряму з від’ємним кутовим коефіцієнтом;

б)магнітна проникність

феромагнетиків залежить від напруженості поля; у діа- і парамагнетиків – не залежить;

в) розмагнічений феромагнетик намагнічується зовнішнім магнітним полем; залежність В(Н) виражається кривою 01 (мал.4.18). При зменшенні Н до нуля В(Н) змінюється по кривій 1-2; має місце відставання зміни індукції від зміни напруженості. Це явище називається магнітним гістерезисом. Магнітна індукція, що зберігається в феромагнетику після зникнення зовнішнього поля (коли Н=0), називається залишковою магнітною індукцією (Вr). Щоб розмагнітити феромагнетик, треба зняти залишкову індукцію; для цього потрібно створити поле протилежного напрямку. Напруженість поля Нс (відрізок 03 на мал.4.18), при якій магнітна індукція дорівнює нулю, називається коерцитивною силою.

Така залежність В (Н) називається петлею гістерезису.

Властивості феромагнетиків пояснюються наявністю в них областей спонтанної намагніченості – доменів. Розташування магнітних моментів доменів у відсутності зовнішнього поля – хаотичне, тому і сумарна намагніченість дорівнює нулю. В зовнішньому полі магнітні моменти доменів повертаються вздовж поля і феромагнетик намагнічується.


§ 4.11. Вільні електромагнітні коливання

Вільні електромагнітні коливання виникають в ідеальному коливному контурі, що складається з конденсатора ємністю С та котушки індуктивністю L (мал.4.19). Конденсатор заряджається від джерела постійної напруги (ключ К в положенні 1) і в момент часу t=0 під’єднується до котушки (ключ К в положенні 2). Процес розрядки конденсатора супроводжується збільшенням сили струму в котушці; отже, з’являється е.р.с. самоіндукції. Згідно з правилом Лєнца, струм самоіндукції тече проти струму розрядки. Через чверть періода конденсатор повністю розряджений, а сила струму в котушці досягає максимуму. Далі сила струму в котушці зменшується, а струм самоіндукції, згідно з правилом Лєнца, тече в тому ж самому напрямку, що і струм розрядки, перезаряджаючи конденсатор. Далі такі процеси повторюються у зворотньому напрямку, і в момент часу t=Tсистема повертається у вихідний стан.

Періодичні зміни заряду на пластинах конденсатора та сили струму в котушці називаються електромагнітними коливаннями. Якщо втрати енергії на нагрівання відсутні (контур ідеальний, R=0), то коливання будуть незгасаючими. Запишемо для такого контура 2-й закон Кірхгофа:

, де
– напруга на конденсаторі,
–е.р.с. самоіндукції. Підставивши вирази для цих двох величин в 2-й закон Кірхгофа, після нескладних перетворень отримаємо

, (4.48)

де

– циклічна частота вільних електромагнітних коливань (власна частота). (4.48) являє собою диференціальне рівняння вільних електромагнітних коливань; його розв’язок має вигляд

(4.49)