Смекни!
smekni.com

Фізика напівпровідників (стр. 7 из 25)

Головною оптичною віссю лінзи називають пряму, що проходить через центри кривизни її поверхонь. Можна вважати, що в такій лінзі точки перетину головної оптичної осі з обома поверхнями лінзи співпадають. Цю точку називають центром лінзи. Промені, які проходять через центр лінзи, не зазнають заломлень.

Величину

(5.4)

називають оптичною силою тонкої лінзи

і
– абсолютні показники заломлення для матеріалу лінзи і оточуючого середовища). Для збирної (додатньої) лінзи Ф>0, для розсівної (від’ємної) Ф<0. Точки, що лежать на головній оптичній осі лінзи по обидві сторони від оптичного центру на відстанях, f,
називають головними фокусами лінзи (мал.5.4).

Для першого головного фокуса F

(5.5)

Аналогічно друга головна фоку-

сна відстань

(5.6)

Площини, які проходять через головні фокуси Fі

лінзи ерпендикулярно до головної оптичної осі, називаються фокальними площинами лінзи.

Найчастіше буває, що речовина по обидва боки від лінзи одна й таж (наприклад, повітря). Тоді головні фокусні відстані чисельно дорівнюють одна одній. Протилежні знаки означають, що головні фокуси лежать з різних боків від лінзи. Для збирної лінзи (оскільки Ф>0)

, для розсівної лінзи (оскільки Ф<0)

Для лінз справедлива формула

, (5.7)

або у вигляді

(5.8)

де всі відрізки відраховуються від центра лінзи, а радіуси кривизни завжди напрямлені від вершини поверхні до центра сферичної поверхні. Вони вважаються додатніми, якщо напрямлені в сторону поширення світла. Кути відраховуються від напрямку головної оптичної осі і вважаються додатніми, якщо вони відраховані за стрілкою годинника. Відрізки, перпендикулярні до оптичної осі, відраховуються від оптичної осі; вони додатні вище оптичної осі і від’ємні нижче оптичної осі.

При розв’язуванні задач основне рівняння тонкої лінзи (5.7) записують у вигляді:

(5.9)

де

,
, знак плюс відповідає збирній лінзі, знак мінус – розсівній.

Лінійне збільшення для тонкої лінзи визначається як

. (5.10)

Для дійсних зображень Г<0, тобто вони обернені; для уявних зображень Г>0, тобто вони прямі.

Оптична сила Ф центрованої системи двох тонких лінз на відстані d одна від одної з оптичними силами Ф1 і Ф2 дорівнює

. (5.11)

§ 5.3. Інтерференція світла

Інтерференція світла – це явище накладання когерентних світлових хвиль, в результаті якого відбувається перерозподіл світлової енергії в просторі. В точках простору, куди когерентні хвилі приходять у фазі, вони підсилюють одна одну; в точках, куди вони попадають в протифазі, відбувається послаблення світла. На екрані спостерігається характерна інтерференційна картина у вигляді чергування темних і світлих смуг – максимумів і мінімумів освітленості, якщо падаюче світло моно- хроматичне.

Хвилі називаються когерентними, якщо їхня різниця фаз не залежить від часу.

У випадку максимуму інтенсивності інтерференційної картини в оптичній різниці ходу двох когерентних хвиль вкладається ціле число довжин хвиль (у вакуумі)

тобто

(k=0, 1, 2, …) (5.12)

У середовищі довжина хвилі

Мінімум інтерференції спостерігається, коли в оптичній різниці ходу вкладається непарне число півхвиль, тобто

∆=

(2k+1)
(k=0, 1, 2, …) (5.13)

Оптичною довжиною шляху променя називають добуток геометричного шляху променя на показник заломлення середовища.

Природні джерела світла не є когерентними. Це зумовлене тим, що акти випромінювань атомів відбуваються при хаотичній зміні різниці фаз. Для отримання когерентних світлових хвиль за допомогою звичайних джерел світла застосовують метод поділу світла від одного джерела (метод поділу амплітуди або фронту хвилі) на дві або декілька систем хвиль. В кожній з них представлене випромінювання одних і тих же атомів джерела, тому внаслідок однакового походження ці хвилі когерентні.

Поділ фронту хвилі відбувається при інтерференції на двох щілинах (дослід Юнга), дзеркалах Френеля, біпризмі Френеля. Поділ амплітуди світлових хвиль має місце при інтерференції на тонких плівках (плоскопаралельна пластинка, клин).

Можна показати, що відстань від центра інтерференційної картини до k–го інтерференційного максимуму

(5.14)

а мінімуму

(5.15)

де

– довжина хвилі, L – відстань від екрана до джерел світла, d – відстань між джерелами. Зі співвідношень (5.14) і (5.15) видно, що відстань між інтерференційними смугами дорівнює

(5.16)

Умови максимумів і мінімумів інтерференції світла на плоскопаралельній пластинці (клину) у відбитому світлі визначаються співвідношеннями:

(k=0, 1, 2, …) (5.17)

(k=0, 1, 2, …) (5.18)

де d – товщина пластинки,

– абсолютні показники заломлення середовищ, і – кут падіння променя на пластинку (мал.5.6).

У прохідному світлі умови підсилення і послаблення світла міняються місцями.

Інтерференційна картинана плоско-паралельній пластинці локалізована в нескінченності. Вона являє собою смуги рівного нахилу.

Умови (5.17) і (5.18) справедливі також для клину (клиноподібних плівок). У цьому випадку інтерференційна картина являє собою смуги рівної товщини і локалізована біля поверхні клину.

Явище інтерференції використовують в точних вимірювальних приладах – інтерферометрах, які з високою точністю дозволяють вимірювати відрізки довжин (похибка порядку

м), показники заломлення (інтерференційний рефрактометр). Інтерферометри також застосовують для спектрального аналізу світла (інтерференційний спектрометр), чистоти обробки поверхні металевих виробів (інтерферометр Лінника).

Вертикальний пучок монохроматичного світла від джерела Sпадає під кутом

на плоско-паралельну напівпрозору пластинку А. Частина світла відбивається пластиною (промінь 1), а частина–проходить крізь пластинку (промінь 2). Промінь 1 відбивається від дзеркала Д
і частково проходить через пластинку А (промінь
. Промінь 2 відбивається від дзеркала Д
і повертається до пластинки
двічі проходячи через скляну пластинку К, яка компенсує оптичну різницю ходу в обох плечах інтерферометра. Хвилі
і
когерентні, їх оптична різниця ходу

(5.19)

де n – абсолютний показник заломлення повітря, а

і
– відстані від точки О до дзеркал Д
і Д
Якщо
то спостерігається інтерференційний максимум. Зміщення одного з дзеркал на відстань
приводить до появи інтерференційного мінімуму. Таким чином, по зміні інтерференційної картини можна фіксувати малі переміщення.