Під питомим перехідним опором розуміють опір одиниці площі контактного переходу струму, що протікає по нормалі до шарів контакту.
Цей опір обумовлений розсіянням носіїв струму на неоднорідностях в місці зіткнення двох металевих матеріалів; стрибкоподібною зміною атомної і електронної структури, а також наявністю чужорідних включень в місці контакту. Отже, значення питомого перехідного опору істотно залежить від природи контактуючих матеріалів, а також умов і способу їх формування. [1]
РОЗДІЛ 2. ТЕХНОЛОГІЯ ВИРОБНИЦТВА ІНТЕГРАЛЬНИХ МІКРОСХЕМ
Сукупність технологічних операцій, складових технологічний маршрут виробництва тонкоплівкових ІС, включає підготовку поверхні підкладки, нанесення плівок на підкладку і формування конфігурацій тонкоплівкових елементів, монтаж і збірку навісних компонентів, захист і герметизацію ІС від зовнішніх дій. Важливе значення при створенні ІС мають контрольні операції, а також підготовка виробництва: виготовлення комплекту масок і фотошаблонів, контроль компонентів ІС і початкових матеріалів. [4]
Нанесення плівок на підкладку ІС здійснюється:
а) термічним випаровуванням матеріалів у вакуумі з конденсацією пари цих матеріалів на поверхню підкладки;
б) іонним розпилюванням мішеней з матеріалів, що наносяться, з перенесенням атомів мішеней на поверхню підкладки;
в) хімічним осадженням плівок в результаті протікання хімічних реакцій в газовій фазі над поверхнею підкладки з утворенням плівкотвірної речовини з подальшим його осадженням на підкладку.
Для формування конфігурацій провідного, резистивного і діелектричного шарів використовують різні методи: масковий (відповідні матеріали напилюють на підкладку через знімні маски); фотолітографія (плівку наносять на всю поверхню підкладки, після чого витравляють з певних ділянок); електронно-променевий (деякі ділянки плівки видаляють за заданою програмою з підкладки шляхом випаровування під впливом електронного променя); лазерний (аналогічний електронно-променевому, тільки замість електронного застосовують промінь лазера). Найбільшого поширення набули два перші способи, а також їх поєднання.[3]
Найпростішим методом отримання заданої конфігурації плівкових елементів є масковий, при якому нанесення кожного шару тонкоплівкової структури здійснюється через спеціальний трафарет. При масковому методі рекомендується така послідовність формування шарів ІС:
1) напилення резисторів, провідників і контактних площадок;
2) міжшарова ізоляція;
3) другого шару для перетину провідників;
4) нижніх обкладань конденсаторів;
5) діелектрика;
6) верхніх обкладок конденсаторів;
7) захисного шару.
Плівка з напилюваного матеріалу осідає на підкладці в місцях, відповідних малюнку вікон в масці. Як матеріал знімної маски використовують плівки берилієвої бронзи завтовшки 0,1-0,2 міліметра, покриту шаром нікелю завтовшки близько 10 мкм.
Нанесення плівок через знімні маски здійснюють термічним випаровуванням у вакуумі або іонно-плазмовим розпилюванням.
В результаті викривлення маски в процесі напилення плівки між маскою і підкладкою утворюється зазор, що приводить до підзапалу. Крім того, розміри вікон в масці при багатократному напиленні зменшуються. Все це обумовлює меншу точність даного методу в порівнянні з фотолітографією.
Не дивлячись на недоліки масковий метод є найпростішим, технологічнішим і високопродуктивним. [1]
Цей метод дозволяє отримати конфігурацію елементів будь-якої складності і має велику точність в порівнянні з масковим, проте він складніший.
Існує декілька різновидів фотолітографії. Метод прямої фотолітографії передбачає нанесення суцільної плівки матеріалу тонкоплівкового елементу, формування на її поверхні фоторезистивної контактної маски, витравляння через вікна у фоторезисті зайвих ділянок плівки. Контактна маска з фоторезиста або іншого матеріалу, стійкішого до подальших технологічних дій, відтворює малюнок фотошаблону з плівки. [3]
Експонований фоторезист віддаляється (розчиняється) після чого плівка резистивного матеріалу видаляється з ділянок, не захищених фоторезистом. Далі на підкладці у вакуумі наноситься суцільна плівка алюмінію. Після фотолітографії і травки алюмінієм провідна плівка залишається в областях контактних площадок і провідників. При цьому сформовані на попередньому етапі резистори не ушкоджуються. Після нанесення поверх провідних елементів і резисторів захисного шару скла проводиться ще одна, третя обробка фотолітографії, в результаті якої скло віддаляється з областей над контактними площадками, а також по периметру плати. [1]
Метод зворотної (вибуховий) фотолітографії відрізняється від попереднього тим, що спочатку на підкладці формується контактна маска, потім наноситься матеріал плівкового елементу, після чого проводиться видалення контактної маски.
При методі фотолітографії для виготовлення ІС, що містять резистори і провідники, використовують два технологічні маршрути. Перший варіант – напилення матеріалу резистивної і провідної плівок; фотолітографія провідного шару; фотолітографія резистивного шару; нанесення захисного шару. Другий варіант – після проведення перших двох операцій, тих же що і в попередньому варіанті, спочатку здійснюють фотолітографію і травлять одночасно провідний і резистивний шари, потім другу фотолітографію для видалення провідного шару в місцях формування резистивних елементів, після чого слідує нанесення захисного шару і фотолітографія для розтину вікон в нім над контактними площадками. [2]
При виробництві плівкових мікросхем, що містять провідники і резистори з двох різних (високоомного і низькоомного) резистивних матеріалів, рекомендується така послідовність операцій: почергове напилення плівок спочатку високоомного, потім низькоомного резистивних матеріалів; напилення матеріалу провідної плівки; фотолітографія провідного шару; фотолітографія низькоомного резистивного шару; фотолітографія високоомного резистивного шару; нанесення захисного шару. [2]
При поєднанні маскового методу і фотолітографії методів для мікросхем, що містять резистори, провідники і конденсатори, використовують два варіанти:
1) напилення резисторів через маску, напилення провідної плівки на резистивну; фотолітографія провідного шару; почергове напилення через маску нижніх обкладань, діелектрика і верхніх обкладань конденсатора; нанесення захисного шару;
2) напилення резистивної плівки і провідної плівки на резистивну; фотолітографія провідного і резистивного шарів; фотолітографія провідного шару; напилення через маску нижніх обкладань, діелектрика і верхніх обкладань конденсатора; нанесення захисного шару.
Для схем, що не містять конденсаторів, застосовують один з трьох варіантів:
1) напилення через маску резисторів і провідної плівки; фотолітографія провідного шару; нанесення захисного шару;
2) напилення резистивної плівки; фотолітографія резистивного шару; напилення через маску провідників і контактних майданчиків; нанесення захисного шару;
3) напилення резистивної плівки, а також контактних майданчиків і провідників через маску; фотолітографія резистивного шару; нанесення захисного шару. [1]
Схема цього методу показана на рис 3.1. Металевий або скляний ковпак 1 розташований на опорній плиті 2. Між ними знаходиться прокладка 3, що забезпечує підтримку вакууму після відкачування повітря з під ковпака. Підкладка 4, на яку проводитися напилення, закріплена на утримувачі 5. До утримувача прикріплений нагрівач 6 (напилення проводитися на нагріту підкладку). Випарник 7 включає в себе нагрівач і джерело напилюваної речовини. Поворотна заслінка 8 перекриває потік парі від випарника до підкладки: напилення триває протягом часу, коли заслінка відкрита.[3]
Рис 3.1. Термічне (вакуумне) напилення
Нагрівач зазвичай є ниткою або спіраллю з тугоплавкого металу (вольфрам, молібден і ін.), через який пропускається достатньо великий струм. Джерело напилюваної речовини зв'язується з нагрівачем по-різному: у вигляді дужок, що навішуються на нитку напруження; у вигляді невеликих стержнів, що охоплюються спіраллю, у вигляді порошку, засипаного в тигель, що нагрівається спіраллю і тому подібне. Замість ниток розжарення останнім часом використовують нагрівання за допомогою електронного променя або променя лазера.[3]
На підкладці створюються найбільш сприятливі умови для конденсації пари, хоча частково конденсація пари відбувається і на стінках ковпака. Дуже низька температура підкладки перешкоджає рівномірному розподілу адсорбованих атомів: вони групуються в "острівці" різної товщини, часто не зв'язані один з одним. Навпаки, дуже висока температура підкладки приводить до відриву атомів, що тільки що осіли, до їх "перевипаровування". Тому для отримання якісної плівки температура підкладки повинна лежати в деяких оптимальних межах (зазвичай 200-4000С). Швідкість наростання плівок залежить від ряду чинників (температура нагрівача, температура підкладки, відстань від випарника до підкладки, тип напилюваного матеріалу і ін.) і лежить в межах від десяти до десятків нанометрів в секунду.[3]
Міцність зв'язку – зчеплення плівки з підкладкою або іншою плівкою – називається адгезією. Деякі поширені матеріали (наприклад, золото) мають погану адгезію з типовими підкладками, зокрема з кремнієм. Утаких випадках на підкладку спочатку наносять так званий підшар, характерний хорошою адгезією, а потім на нього напилюють основний матеріал, у якого адгезія з підшаром теж хороша. Наприклад, для золота підшаром можуть бути нікель або титан.[3]