| |
Рис.33. Схематичне зображення детектору водню з резистивним шаром 3C–SiC на n-type Si(001).На часовій залежності зображено зміну вмісту водню в аргоні з кроком 10% (від 0 до 100%). Пунктирна лінія представляє детекцію без, суцільна з шаром 3C–SiC. Температура детекції 50 оС. [15] | Рис.34. Детекція водню при 50 оС (без і з шаром 3C–SiC). Покрокове зростання та зменшення на 10 % концентрації водню в аргоні- показує оборотність процесу адсорбції водню. [15] |
Рис.35. Схематичне зображення та фотографія (електронного мікроскопу) датчику газу на основі нанодротів з ZnO на SiO2 Si- субстраті, та вольтамперна характеристика такого датчику. [16] | Рис.36. Крива залежності чутливості детектора на нанодротів із SnO2 від концентрації NO2 при температурі 225 °C. [16] |
В якості детектора NO2 було запропоновано нанодроти ZnO [16] на SiO2/Si субстраті (Рис. 35).
Ефект зв’язку дефектів з кисневими вакансіями дозволяє здійснити детекцію газів. Показано, що наявність NO2 змінює опір сітки з ZnO нанодротів. При чому, оптимальною для детекції є температура 225 ОС (Рис.36).
Використання ж нанодротів на базі GaN (Рис.37), дозволило здійснити детекцію водню [17]. Показано, що водень міняє опір сітки з таких нанодротів, при чому, наявність паладієвого покриття значно збільшує чутливість детектора (Рис.38)
Рис.37. Фото сканіруючого мікроскопу GaN нанодротів. [17] | Рис.38. Залежність опору сітки з нанодротів від концентрації водню в повітрі, при використанні нанодротів без та з паладієвим покриттям (в кімнатній температурі). Чутливість детекції при паладієвому покритті значно вища, як без нього. [17] |
Рис.39 Схематичне зображення газового сенсору на основі вуглецевих нанотрубок (DWCNT) на діелектричній мембрані. [18] | Рис.40.Залежність модуля трансмісії нанотрубок від частоти електромагнітної хвилі до (чорна лінія) і після (сіра лінія) адсорбції газу. [18] |
В [18] в якості детектора азоту показано можливість використання вуглецевих нанотрубок. Вуглецеві нанотрубки покривають тонку діелектричну мембрану (Рис. 39). Принцип дії даного детектора базується на зміні прозорості -S21 (трансмісії) системи нанотрубок для високочастотного діапазону (0-110 ГГц) (Рис.40).
2.3Технології, що використовуються при побудові датчиків газів
Обидва пункти охоплюють досить широкий спектр фізичних, хімічних технологій. Однак стосовно самої побудови датчиків слід мабуть відмітити наступні високотехнологічні методи сьогодення: CVD (Chemical vapor deposition)- хімічне осадження з газової фази ( її різновидністей - MOCVD -Metal Organic Chemical Vapor Deposition – осадження металлорганічних сполук із газової фази, PACVD (Plasma Assisted Chemical Vapour Deposition), PECVD - (Plasma Enhanced Chemical Vapour Deposition) осадження в присутності плазми, LCVD (Laser CVD) – в присутності лазера) та MBE (Molecular Beam Epitaxy)- молекулярно променева (пучкова) епітаксія (МПЕ), методи травлення, фотолітографії, полірування.