Смекни!
smekni.com

Фізичні основи квантової электроніки (стр. 4 из 7)

,

а в основному (не збудженому) стані

де N=N1+N2 - загальне число випромінювачів, E1 < E2 - енергія випромінювачів.

При N2 > N1

, якщо ефективна температура середовища T* < 0. Інверсна населеність активного середовища (тобто її негативна ефективна температура) створюється в результаті накачування енергії в середовище від зовнішнього джерела. Наприклад, накачування здійснюють при пропусканні електричного струму через активне середовище, за допомогою спалаху потужної лампи, у результаті хімічних реакцій, за допомогою прискорення електронного потоку й т.п.

Первинний світловий (або мікрохвильовий, рентгенівський) потік генерується випромінювачами в активному середовищі в результаті спонтанного випромінювання. Фотони, що поширюються уздовж осі резонатора, відбиваються від дзеркал багаторазово проходять через активне середовище. При цьому вони стимулюють випромінювання збуджених фотонів. Випроменені в результаті індукованих процесів фотони мають таку ж частоту (енергію), хвильовий вектор (імпульс) і поляризацію, як і первинні фотони. Світловий потік частково проходить через напівпрозоре дзеркало. Лазерне випромінювання має високий ступінь когерентності, тому що частота випромінювачів однакова, а різниця фаз залишається постійної в часі. Останнє пояснюється тим, що в резонаторі формується стояча хвиля, яка виникає при інтерференції прямої й зворотної хвиль. Таким чином, резонатор здійснює зворотний зв'язок. Фотони, випромінювані під більшими кутами до осі резонатора залишають активне середовище. Ця частина випромінювання активного середовища некогерентна. При відбитті від дзеркал випромінювання частково ослаблюється, крім цього є втрати в результаті розсіювання в середовищі й дифракції. Для роботи лазера в режимі когерентної генерації необхідно, щоб пілсилення випромінювання за один прохід перевищувало втрати, включаючи випромінювання. Цикл роботи лазера включає два послідовних відбиття від дзеркал з ефективними коефіцієнтами відбиття ρ1 та ρ2, що враховують всі втрати. Ослаблення потоку пропорційно ρ1 ρ2 на шляху 2L за один цикл. Відповідно до закону Бугера-Ламберта інтенсивність світлового потоку, що пройшов шар L у середовищі, дорівнює:

.

Для середовища, що перебуває в термодинамічній рівновазі, коефіцієнт

, а для нерівновагого активного середовища
. Посилення світлового потоку за один цикл дорівнює

Генерація лазерного випромінювання виникає при

, тобто поріг генерації
.

Знайдемо добротність лазера:

, де W=wSL - запасена в резонаторі енергія,
- втрати енергії за одне коливання. Врахуємо, що
- втрати енергії за цикл, де w - густина енергії прямого й зворотного потоків. Час циклу дорівнює
, період лазерного випромінювання
, тоді за одне коливання втрати енергії становлять:

Звідси знаходимо добротність:

, де
- число напівхвиль у резонаторі, , а
.

Виразимо поріг генерації через добротність лазера:

.

Добротність лазера тим вище, чим менше втрати. Поріг генерації обернено пропорційний добротності. Тому для параксіальних променів поріг генерації досягається раніше, ніж для не параксіальних і потужність випромінювання лазера доводиться, в основному, на паралельні параксіальні промені.


Розділ 5. Характеристика основних типів квантових генераторів.

На даний час створено надзвичайно велику кількість різноманітних систем лазерів. Вони відрізняються між собою робочим тілом, а саме створено лазери на основі рубіна та алюміній – ітрієвого граната, на напівпровідникових матеріалах, газах та розчинах барвників. Вони відрізняються між собою будовою, довжиною хвилі випромінюваного світла, але сам принцип їх роботи залишається незмінний.

Розглянемо основні системи цих пристроїв.

а) будова та принцип роботи рубінового лазера.

Рубіновий лазер був першим оптичним квантовим генератором світла (3). Його створили в 1960 році. Робочою речовиною є рубін – кристал оксиду алюмінію Al2O3 (корунд), у який при вирощуванні введена домішка – оксид хрому Cr2O3. Червоний колір кристала рубіна обумовлений випромінюванням іона хрому Cr3+, що у кристалічній решітці заміщає іон Al3+. Густота червоного кольору рубіна залежить від концентрації іонів Cr3+, у темно-червоному рубіні концентрація Cr3+ досягає 1%.

Рис. 5.1 Схема енергетичних рівнів у кристалі рубіна.

Кристал рубіна має дві смуги поглинання: у зеленій й у блакитній частині спектра. Крім цих смуг є два вузьких енергетичних рівні E1 й E'1, при переході з яких на основний рівень атом випромінює світло з довжинами хвиль

та
. Ширина цих ліній
, імовірність змушених переходів для лінії
більше, ніж для
, тому що ця ймовірність обернено пропорційна частоті в кубі v-3.
При опроміненні рубіна білим світлом блакитна й зелена частини спектра поглинаються, а червона відбивається. У рубіновому лазері використається оптичне накачування ксеноновою лампою, що дає спалахи світла великої інтенсивності при проходженні через неї імпульсу струму. Газ ксенон при цьому розігрівається до кількох тисяч градусів. Безперервне накачування неможливе, тому що лампа не витримує тривалого нагрівання. Випромінювання лампи накачування поглинається іонами Cr3+ в області смуг поглинання. Потім із цих рівнів іони Cr3+ дуже швидко в результаті безвипромінювального переходу переходять на енергетичні рівні E1 й E'1. Надлишок енергії передається кристалічній решітці і перетворюється в енергію її коливань (енергію фононів). Рівні E1 й E'1 – метастабільні (час життя атома на рівні E1 дорівнює 4,3 мс). У такий спосіб створюється значна інверсна населеність активного середовища щодо рівня E0.

Кристал рубіна вирощують у вигляді круглого циліндра довжиною близько 5 сантиметрів та діаметром близько одного міліметра.

Рис. 5.2 Будова кристала рубіна та поширення світлових променів у ньому.

Ксенонова лампа, що має форму циліндра й кристал рубіна містяться в дзеркальній порожнині з еліптичним перетином у фокусі еліпса.

Завдяки цьому забезпечується практично повне фокусування випромінювання накачки. Один з торців кристала рубіна зрізують так, щоб забезпечити повне внутрішнє відбиття в рубіні, а інший торець – під кутом Брюстера. Такий зріз забезпечує вихід із кристала випромінювання з відповідною лінійною поляризацією. Далі по ходу променів розташовують напівпрозоре дзеркало.

б) будова та принцип роботи газових лазерів

У гелій-неоновому He-Ne лазері активним середовищем є газоподібна суміш гелію й неону. Генерація здійснюється при переходах між енергетичними рівнями Ne, а He відіграє роль посередника, через який енергія накачування передається атомам Ne.

Атом неону може генерувати більше 130 різноманітних енергетичних переходів. Однак найбільш інтенсивними є лінії випромінювання 632,8 нм, 1.15 мкм та 3.39 мкм. При пропусканні струму через суміш газів гелію та неону атоми гелію в результаті електронних ударів збуджуються до станів

та
, які є метастабільними, тому що перехід з них в основний стан для атома заборонений квантово-механічними правилами відбору.