Смекни!
smekni.com

Фотоэлектронная эмиссия. Эффективные фотокатоды (стр. 5 из 7)

________________________________________________________

Работа выхода

Понятие работы выхода как меры энергии связи электронов с твердым телом возникло уже на ранних стадия развития электронной теории металлов. Для объяснения существования электронного газа внутри металла необходимо было допустить наличие у границ металла некоего поля сил f(x), направленных внутрь металла и препятствующих вылету свободных электронов во внешнее пространство. При удаления электрона из металла совершается работа против этих сил — работа выхода :

(1)

Таким образом, в классической теории металлов работа выхода равнялось скачку потенциальной энергии электрона на границе металла.

В зоммерфельдовской модели металла понятие работы выхода несколько усложнилось. Интеграл выражения (1) определял так называемую внешнюю работу выхода Wa, равную полной глубине потенциального ящика металла. Однако даже при температуре электронного газа Т=0, в отличие от классической теории, считалось что не все электроны обладали кинетической энергией, равной нулю, но распределялись по энергиям от нуля до некоторой максимальной Wi равной границе распределения Ферми. Поэтому наименьшая энергия, которую необходимо сообщить одному из электронов в проводимости при Т=0 для удаления его из металла, оказалось равной

c=Wa-Wi (2)

Если энергию покоящегося электронов вне металла положить равной нулю, то

поэтому

(3)

т.е. работа выхода равна взятой с обратным знаком полной энергии верхнего электронного уровня Emaxв металле, занятого электроном при температуре электронного газа Т=0; в свою очередь уровень Emaxравен уровню электрохимического потенциала Eo электронного газа. Однако и это определение работы выхода не вполне удовлетворительно. Реальный металл не представляет собой потенциального ящика с гладким дном, т.е.U¹const= -Wa, но внутри металла потенциал поля, в котором находится каждый электрон, есть периодическая функция координат, определяемая структурой решетки, а также состоянием всех остальных электронов. Можно дать следующее определение энергии связи электрона в твердом теле, в частности, в металле, не зависящее от конкретной модели этого тела. Сам факт стационарного существования электронов внутри него свидетельствует, что система из Npионов и Ne=Np электронов внутри металла, находящихся в равновесии при температуре Т=0, обладает меньшей энергией, чем те же N pионов с Ne= Ne- n электронами при той же температуре также в состоянии равновесия. Обозначая энергию первой системы через E(Np, Ne), а второй - через E (Np, Ne), можно записать изменение энергии при удалении одного электрона, т.е. работу выхода при Т=0, в следующем виде :

. (4)

Это определение работы выхода аналогично определению работы ионизации нейтрального не возбужденного атома. При T>0 определение (4) делается неоднозначным.

Распределение электронов по энергиям в твердом

теле (металлы).

При построении электронной теории твердого тела требуется определить, какое число dN электронов в теле находится в квантовых состояниях, соответствующих некоторому интервалу энергий dE, иначе говоря, надо найти закон распределения электронов по энергиям. Функция f(e)

характеризующая это распределение, определяется, во-первых, вероятностью w(E) заполнения квантового состояния с энергией Е электроном:

f(E)

(1)

Функция

зависит от свойств частиц, образующих систему. системы тождественных частиц согласно квантовой механики подчиняются принципу неразличимости; для частиц со спином, равным
(фермионы ), в частности для электронов, из этого принципа вытекает принцип Паули. При температуре Т=0 равновесным распределением любых частиц распределение, соответствующее минимуму полной энергии. Для фермионов это условие будет выполнено, если ими будут заняты квантовые состояния, соответствующие самым низким энергетическим уровням; число этих состояний Z, очевидно, равно N. При T >0 равновесное состояние соответствует минимуму свободной энергии. Для системы ферминов это условие удовлетворяется, если вероятность w(E) равна

, (2)

где E0- так называемый электрохимический потенциал системы (часто его называют также уровнем электрохимического потенциала или уровнем Ферми). Величина E0 для системы электронов в некотором теле, взятая с обратном знаком, называется также работой выхода этого тела и обозначается через c или ej, т. е. -E0=c=ej. Формулу (2) принято называть формулу Ферми. Из (1), учитывая (2), получим

(3)

Распределение электронов по энергиям, даваемое формулой, называется распределением Ферми. Для того чтобы написать формулу этого распределения в явном виде, требуется знать электрохимический потенциал системы E0 и закон распределения плотности состояний электронов

Электрохимического потенциала E0 вычисляется из условия нормировки:

где N- полное число электронов системы.

__________________________________________________________

Селективный фотоэффект

Для большинства чистых металлических фотокатодов сила фототока почти не зависит от характера поляризации света; лишь распределения фотоэлектронов по направлениям вылета несколько отличны при фотоэффекте, вызываемом светом, поляризованным параллельно и перпендикулярно к плоскости падения. Спектральная характеристика в видимой и ближней ультрафиолетовой областях спектра плавно поднимается с ростом частоты падающего света. В 1894 Эльстер и Гейтель, исследуя фотоэффект с поверхности сплава калия и натрия, жидкого при комнатной температуре, обнаружили две новые особенности в этом явлении. Во-первых, спектральная характеристика после подъема с уменьшением длины световой волны достигла максимума и затем падала. Наличие наибольшей чувствительности фотокатода при некоторой длине волны получило название спектральной селективности. Во-вторых, фототок оказался существенно зависящим от поляризации падающего света. Введем следующие обозначения. Разложим электрический вектор световой волны, падающего на поверхность фотокатода под некоторым углом к ней, на две компоненты: во-первых, на электрический вектор, который колеблется в плоскости, перпендикулярной к плоскости падения; будем обозначать такой свет через

; во-вторых, на электрический вектор, который колеблется в плоскости падения и, следовательно, имеет составляющую, перпендикулярную к поверхности фотокатода; будем обозначать такой свет через
º.

Было показано, что при наклоном падение световой волны фототок, вызываемый светом

, значительно меньше фототока, вызванного светом
ºтой же интенсивности, что и свет
.Эта зависимость фотоэффекта называется поляризационной селективностью или векториальным эффектом.

На рис.9 (а, б) показаны

Рис 9 (а)

Зависимость фотоэффекта от длины волны электрического вектора

колеблющегося в плоскости падения

Рис 9 (б)

Зависимость фотоэффекта от длины электрического вектора