Смекни!
smekni.com

Эксимерные лазеры (стр. 3 из 7)

Наличие слабой связи у многих эксимеров с участием атомов металлов сильно отражается на их оптических свойствах, когда они используются как лазерная среда. Это приводит к низкому показателю усиления в расчете на возбужденный атом металла; однородному уширению эксимерной полосы; быстрым переходам между возбужденными атомами A* и соответствующими эксимерными молекулами AB*; а также к необходимости повышать плотность инертного газа и к довольно строгим требованиям, накладываемым на степень возбуждения атомов металлов. Также наличие слабой связи позволяет получать (благодаря низкому показателю усиления и однородному уширению) высокие уровни мощности, а также большие энергии в импульсе, чему способствует отвод тепла инертным газом, находящимся при высоком давлении.

1.1.6 Охлаждение, вентиляция и очистка рабочего газа

В эксимерных лазерах, работающих при, примерно, 2% -ном соотношении входной электрической и выходной оптической энергий, избыток энергии должен эффективно выводиться как избыток тепла. Как во всех охлаждающих системах газовых лазеров, плохой теплообмен между рабочим газом и теплообменником становится причиной появления проблем. Обычно активная среда содержится в алюминиевом резервуаре определенного объема под давлением. Встроенный вентилятор создает мощную циркуляцию рабочего газа, что позволяет сохранять активную среду хорошо перемешанной и обновляемой в области генерации и получать высокую скорость прохождения газа через фильтр и теплообменник. Последний, обычно использующий в качестве охлаждающей среды воду, для обеспечения высокой температурной стабильности (особенно в режиме частых повторений) должен иметь определенную зону контакта со средой. На рисунке 5 схематично представлен резонатор эксимерного лазера.

Рисунок 5. Резонатор эксимерного лазера.

На рисунке 6 приведен пример кюветы с коронной предионизацией (см. ниже) и системой охлаждения.


Рисунок 6: A - коронный разряд, B - электроды, C - кювета, D - вентилятор, E - электростатический фильтр, F - теплообменник

1.2 Накачка

Для накачки лазеров на основе эксимеров имеется несколько методов, общим требованием к которым является обеспечение большого удельного энерговклада в активную рабочую среду. К числу этих методов относятся: возбуждение пучков высокоэнергетических электронов (электронное возбуждение), возбуждение электрическим разрядом, поддерживаемым электронным пучком (электроразрядные лазеры с электронной предионизацией), возбуждение быстрым поперечным разрядом, оптическое возбуждение (излучение взрывающихся проволочек).

1.2.1 Накачка электронным пучком

При электронном возбуждении пучок высокоэнергетических электронов обладает энергией от 300 кэВ до 1 МэВ и выше. Формирование электронного пучка производится отдельной электронной пушкой, а сам пучок вводится в активный объем лазера, заполненный газовой смесью, через тонкий слой фольги, разделяющий вакуумный объем электронной пушки и рабочий объем лазера, давление в котором обычно превышает атмосферное. Длительность импульсов возбуждения обычно составляет несколько десятков наносекунд, а плотность тока электронного пучка от нескольких десятков до нескольких сотен ампер на квадратный сантиметр. При данном методе возбуждения удалось обеспечить генерацию на большинстве из перечисленных выше активных сред: KrF*, ArF*, XeCl*, XeF*.

Рисунок 7.Накачка электронным пучком.

Наилучшие результаты достигнуты на фторидах криптона и аргона (KrF и ArF), удельный энергосъем при использовании которых достигает 3 - 30 Дж/л, а рабочий объем возбуждения несколько десятков литров. Энергия импульса излучения при объеме рабочей среды 36 л равна 100 Дж при КПД 1,5% (КПД это отношение энергии излучения к поглощенной энергии электронного пучка). Для оценки полного КПД необходимо учесть КПД преобразования энергии первичного источника питания в энергию электронного возбуждающего пучка, в оптимальных условиях достигающих 50%.

Создана лазерная установка с рабочим объемом 40 см3 (камера длиной 20 см и диаметром 2 см), на которой получены импульсы излучения с энергией 7 мДж. Возбуждение осуществляется электронным пучком 250 - 300 кэВ и током до 5 кА. В качестве рабочей лазерной среды используется смесь газов Ar, Xe, SF6 в соотношении 75: 1: 0,1 при давлении 0,71 МПа.

Способ возбуждения электронным пучком имеет ряд достоинств, к которым следует отнести: возможность возбуждения высоколежащих уровней атомов (т.е. получения излучения в УФ и видимом диапазонах длин волн); возможность возбуждения газов при высоком давлении и больших объемах, что обеспечивает поучение больших энергий излучения; возможность работы при частотах следования импульсов до 100 и более Гц и, следовательно, получение больших средних мощностей излучения. Но этому способу возбуждения присущи и некоторые недостатки, к числу которых относятся трудности введения энергии электронного пучка в газ с достаточно равномерным ее распределением по объему, сложность электронных ускорителей, существенно повышающих стоимость лазера.

Что касается перспектив дальнейшего совершенствования эксимерных лазеров с электронным возбуждением, то можно отметить следующее. Для рассматриваемого типа лазеров наиболее перспективной с точки зрения эффективности представляется квазимолекула KrF*. Теоретический КПД лазера на основе этой активной среды (по отношению к энергии, вложенной в активную среду) составляет 22%, а при возбуждении электрическим разрядом и пучком 35%. Во всех экспериментальных установках, на которых была получена генерация, параметры были неоптимальными, в связи с чем полный КПД таких лазеров не превышал 1 - 2%. Поэтом вопрос с реально достижимых КПД остается открытым и требует дальнейших исследований; энергосъем этих лазеров предполагается увеличить до 40 - 50 Дж/л.

1.2.2 Накачка электрическим разрядом

При использовании электроразрядного способа накачки эксимерных лазеров необходимо обеспечить предионизацию активной среды.

Предионизация используется для предотвращения дугового разряда и обычно достигается излучающими в УФ диапазоне искровыми разрядами, пробегающими параллельно оси трубки. Поскольку глубина проникновения УФ излучения в газовую смесь ограничена, для больших установок иногда применяют предионизацию рентгеновским излучением.


Рисунок 8. Накачка электрическим разрядом.

К другим методам предионизации относятся использование импульсных источников электронного пучка (предионизация электронным пучком) и ионизация благодаря коронному эффекту (коронная предионизация). Как только произошла ионизация во всем объеме лазерного разряда, закорачивается быстродействующий вентиль и через электроды разряда проскакивает главный разрядный импульс. Поскольку время жизни верхнего уровня сравнительно невелико, а также чтобы избежать образования дуги, необходимо обеспечить быструю накачку (длительность импульса накачки 10 - 20 нс). В случае, представленном на рисунке 1, это достигается тем, что уменьшают по возможности индуктивность контура и используют безындукционные конденсаторы.

Эффект предионизации тлеющим разрядом помогает получить равномерные и согласованные профили разрядов с минимумом ответвлений от основного разряда. Параметры, влияющие на предионизацию, такие как порог предионизации, начальная плотность электронов и согласованность предионизации, сильно зависят от составляющих резонатора: профиль электрода, тип электрода, давление в газовой среде, длительность предионизации, потери электронов при предионизации, временная задержка между предионизацией и основным разрядом, время нарастания основного импульса; а так же от основных геометрических параметров резонатора.

Два наиболее распространенных метода предионизации:

для эксимерных лазеров малых и средних размеров - предионизация электродами, расположенными вблизи от главных электродов;

для больших систем - предионизация рентгеновскими источниками.

Рисунок 9. Сектор кюветы, отвечающий за предионизацию газа.

Предионизационные электроды, показанные на рисунке 7, генерируют искровой разряд приблизительно за 10 нс до основного разряда. Искры инициируют УФ излучение, достаточное для предионизации рабочего газа с начальной плотностью около 108 электронов/см3 между электродами. В последних моделях коммерческих эксимерных лазеров были введены новые методы предионизации, например, Поверхностный разряд в диэлектрике - CreepingDischargeonDielectricSurface (CDDS-preionizerforXeCl-lasers) или Поверхностная коронная предионизация - SurfaceCoronaPreionization (SCP). Особенно в качестве источника предионизации зарекомендовал себя метод SCP, позволяющий создавать уровни с одинаковой плотностью электронов с гораздо большей равномерностью, достигаемой значительным снижением полной энергии.

1.2.2.1 Разрядные цепи

Пороговые значения инверсной населенности в эксимерных лазерах обычно высокие в связи с короткой длиной волны и значительной шириной линии основных переходов. Типичное значение концентрации активных носителей заряда на верхнем рабочем уровне составляет 1014 - 1015 см3. Такие концентрации могут быть получены только при очень высокой плотности энергии накачки (10-2 Дж/см3). Для этого необходимы специальные электроразрядные цепи. Обычно они состоят из емкостей и индуктивностей и в их состав входят специальные высоковольтные ключи.