Поэтому установку в цепи генератора выключателя, обеспечивающего отключение тока КЗ от генератора, следует считать обязательной и это будет соответствовать ГОСТ 12.1.010 "Взрывобезопасность. Общие требования." Пункт 2.6 "Предотвращение возникновения источника инициирования взрыва должно быть обеспечено: ...применением быстродействующих средств защитного отключения возможных электрических источников инициирования взрыва."
Что касается отключения тока КЗ от системы, то как показывает практика, оно может быть возложено на выключатель ВН, при этом время воздействия на оборудование тока подпитки КЗ от энергосистем будет снижено, а ощутимых последствий по снижению надежности из-за перевода питания сети собственных нужд на резервный трансформатор не ожидается.
Применение ТСН на станциях выполняется по схемам с верхней (вариант I) и нижней (вариант II) перемычкой (рис. 1.7). Особенности упомянутых схем хорошо иллюстрируются в схеме объединенного блока. При повреждении ТСН1 или ТСН2 в схеме с верхней перемычкой необходимо отключать весь блок. При повреждении ТСН1 или ТСН2 в схеме с нижней перемычкой ГВ1 или ГВ2 соответственно отключают аварийно только один блок из двух. Оба варианта по надежности и затратам практически равноценны. Выбор схемы включения ТСН определяется ответственностью системы собственных нужд. В связи с этим на АЭС предпочтение отдается схеме с нижней перемычкой.
Рис.1.7. Упрощенная схема электростанции с двумя повышающими трансформаторами.
Имеются и другие схемы, в которых применение ГВ обеспечивают высокую гибкость, надежность системы и экономическую эффективность. Так, в схеме объединенных и укрупненных блоков применяется чередование схем с верхней и нижней перемычками. Ряд отечественных и зарубежных станций с крупными блоками для повышения надежности питания системы собственныхнужд комплектуется дополнительным резервным дизель-генераторным источником питания.
Для схем с генераторными выключателями, обеспечивающими отключение токов КЗ только от генераторов, необходимо применение соответствующей логики действия электрических защит.
Проведенные предварительные проработки показывают, что изменения в логике действия защит будут в основном касаться дифференциальных защит генератора, блочного трансформатора и блока.
Дифференциальная защита генератора и дифференциальная защита блока должны сначала действовать на отключение выключателя ВН в укрупненных электрических блоках и на отключение выключателей неповрежденных цепей генераторов. После отключения указанных выключателей должен отключаться выключатель поврежденной цепи, затем должен включаться выключатель ВН для восстановления питания собственных нужд, а в укрупненных электрических блоках могут включаться в сеть генераторы с неповрежденными цепями.
Дифференциальная защита блочного трансформатора должна действовать одновременно на отключение выключателя ВН и выключателя генератора поврежденной цепи.
В зону действия дифференциальной защиты генератора следует включать генераторный выключатель.
1.3 Токоведущая система и система контактов
Выпускаемые промышленностью ГВ имеют различные электрические схемы. Рассмотрим основные из них, поясняющие принцип работы ГВ.
Наиболее простая схема (рис. 1.8, а) содержит главные 1 и дугогасительные 2 контакты. Для этой схемы в отключенном положении выключателя контакты 2 всегда разомкнуты.
Включение выключателя выполняют либо главными контактами 1 (контакты 2 при этом могут оставаться в разомкнутом состоянии или замыкаться после замыкания контактов 1), либо дугогасительными контактами 2, после которых замыкают главные контакты 1.
Порядок оперирования при отключении: размыкаются контакты 1, ток из главной цепи переходит в цепь контактов 2, а затем размыкаются контакты 2. Если во включенном положении контакты 2 разомкнуты, то по команде на отключение выключателя до начала размыкания контактов 1 замыкаются контакты 2 (только на время оперирования). После этого отключение происходит, как описано выше.
Рис.1.8. Основные электрические схемы генераторных выключателей.
В схеме рис. 1.8, б при включенном положении выключателя контакты 1, 2 и 3 замкнуты. Обязательным элементом такого выключателя является отделитель 3. Порядок оперирования при отключении: размыкаются контакты 1, после этого — контакты 2 и затем уже без тока размыкаются контакты 3, после чего замыкаются контакты 2. Контакты 2, размыкающиеся только на время оперирования, принято называть импульсными. Включение осуществляется либо главными контактами 1, либо контактами отделителя 3.
Схемы рис. 1.8, а и б обычно применяются при Iо.ном, не большем 100 кА. Электрическая схема ГВ с Iо.ном, большим 100 кА, приведена на рис. 1.8,в. По сравнению с описанными выше схемами она снабжена шунтирующим резистором 4 и вспомогательным контактом 5. Включение ГВ осуществляется либо контактом 1, либо контактом 3. Отключение отличается тем, что после размыкания дугогасительных контактов 2 ток переходит в цепь резистора 4, ограничивается им, а затем прерывается вспомогательным контактом 5. [5].
Одним из основных недостатков ГВ является проблема переброса тока из главной токоведущей цепи в цепь дугогасительных контактов. Так как генераторное напряжение не велико, а мощность большая, то возникают большие токи. При перебросе 95% тока должно быть отправлено в дугогасительную цепь, что вызывает большое возмущение в системе. За счет этого возмущения возникает, так называемая дуга переброса, что приводит к оплавлению контактов.
Так как ГВ являются выключателями на большие токи, то возникает проблема с контактными системами. Происходит оплавление, сваривание контактов, что приводит к отказу аппарата при отключении. Решением является использование контактов из тугоплавких материалов (кирита); использование нескольких ярусов контактов в токоведущей системе с целью последовательного переброса тока из большего контура в меньший, что уменьшает индуктивность и облегчает условия переброса, при которых не возникает дуга переброса. Необычное решение этой проблемы реализовано в выключателе НЕ фирмы «АВВ» на напряжение 24кВ, отключаемый ток до 100кА, номинальный ток 12кА. На рис. 1.9 изображена схема его дугогасительного устройства.
Рис. 1.9. Дугогасительное устройство генераторного выключателя НЕ «АВВ»
I - вводы; 2 – катушка магнитного дутья; 3 – неподвижный дугогасительный контакт, он же металлическое дугогасительное сопло; 4 – подвижной дугогасительный контакт, он же – второе сопло; 5 – главный неподвижный контакт; 6 – главный мостиковый контакт; 7 - изоляторы; 8 – компрессионный поршень; 9 – изоляционный вал-тяга; 10 – камера высокого давления;
При отключении производится перемещение детали, которая выполняет одновременно функции Главного и дугогаситепьного контакта, дугогасительного сопла и компрессионного поршня. Сначала размыкаются главные контакты 5 и 6, потом дугогаситепьные 3 и 4. Внутри неподвижного соплообразного дугогаситепьного контакта помещена катушка магнитного дутья 2. При размыкании контактов дуга приходит в движение в магнитном поле и перекачивает газ в камеру высокого давления. Благодаря этому снижается эрозия и разрушение дугогасительных контактов. В случае, когда приходится отключать малый ток, небольшое давление в этой камере создается с помощью компрессионного поршня.
Также при отключении присутствует большое значение апериодической составляющей. На примере французкого генераторного выключателя FKG2S 24кВ, 63кА на рис. 1.10 видно что ток не проходит через ноль.
Рис. 1.10 Ток короткого замыкания с апериодической составляющей
На рис. 1.11,1.12 показано отключение дуги выключателем FKG2S за 18.4 мс, напряжение на дуге достигает 4.8 кВ в момент отключения.
Рис. 1.11. Осциллограммы тока Рис. 1.12. Напряжение на дуге в короткого замыкания и напряжения момент отключения.
Благодаря запасу давления газа за счет энергии дуги и эффекта автогенерации выключатель FKG2S успешно гасит дугу при повторном проходе тока через ноль. Это дает возможность отключать токи с большой постоянной времени апериодической составляющей.
В качестве примера отключения можно рассмотреть отключение генераторного блока 800 МВт выключателем нагрузки КАГ-24 [7].
Выключатель нагрузки КАГ-24 имеет четыре контакта, размыкающихся в определенной последовательности. Схема контактов полюса выключателя нагрузки КАГ-24 показана на рис. 1.10. При отключении генератора сначала начинает расходиться главный токоведущий контакт выключателя нагрузки 1. Через 20 - 30 мс после начала расхождения главного токоведущего контакта начинает отключаться основной дугогасительный контакт 2. Еще через 20 - 30 мс начинает расходиться вспомогательный дугогасительный контакт 3, последовательно с которым включен резистор 140 Ом. К этому времени должно произойти отключение тока основным дугогасительным контактом. Ток генератора, ограниченный резистором, окончательно гасится вспомогательными дугогасительными контактами. Затем отключаются контакты отделителя 4.
Рис. 1.10 Схема контактов выключателя нагрузки КАГ-24:
I - главный токоведущий контакт; 2 - контакт основной дугогасительной камеры; 3 - контакт вспомогательной дугогасительной камеры; 4 - контакт отделителя