Смекни!
smekni.com

Электрические аппараты (стр. 25 из 57)

Недостатком скользящего токосъема является большая сила трения, которая требует значительной мощности приводного механизма. Сила трения уменьшается при роликовом контакте (рис. 7.5). Подвижный контакт 1 роликового токосъема (рис. 7.5) выполнен в виде стержня круглого сечения и имеет поступательное движение. Токосъемные стержни 2 также имеют круглое сечение и соединены с выводом аппарата. Соединение стержня 1 и стержней 2 осуществляется с помощью конусных роликов 3, которые катятся по поверхности стержней 1 и 2. Контактное нажатие создается пружинами 4.

Число роликов зависит от номинального тока и тока КЗ. Этот контакт для своего перемещения требует небольших усилий и широко применяется в современной аппаратуре высокого напряжения.



Рис. 7.3. Передача тока с подвижного контакта на вывод аппарата с помощью гибкой связи


Рис. 7.4. Скользящий токосъемный розеточный контакт


Рис. 7.5. Роликовый токосъемный контакт


в) Разрывные контакты. Контакты многих аппаратов разрывают цепь с током, большим, чем минимальный ток дугообразования. Возникающая электрическая дуга приводит к быстрому износу контактов. Для надежного гашения дуги, образующейся при отключении, необходимо определенное расстояние между неподвижным и подвижным контактами, которое выбирается с запасом. Расстояние между неподвижным и подвижным контактами в отключенном состоянии аппарата называется зазором контактов (рис. 7.6, 7.7). Конструкция разрывных контактов определяется значениями номинального тока, номинального напряжения, тока КЗ, режимом работы, назначением аппарата и рассмотрена в разделах, посвященных устройству различных аппаратов. Здесь же рассмотрим только некоторые общие вопросы.

Число площадок касания и стабильность переходного сопротивления зависят от конструкции крепления подвижного и неподвижного контактов. Подвижные контакты, имеющие возможность устанавливаться в положение с максимальным числом контактных площадок, называются самоустанавливающимися. Контактный узел с самоустанавливающимся контактом дан на рис. 7.6. Неподвижные контакты / и подвижный мостиковый контакт 2 в месте касания имеют сферические (или цилиндрические) напайки 3, выполненные из серебра или металлокерамики. Контактное нажатие создается пружиной 4. После касания контактов скоба 5, связанная с приводом аппарата, продолжает свое движение вверх на величину хода, равную провалу б. Применительно к конструкциям, показанным на рис. 7.6 и 7.7, провалом называется расстояние, на которое переместится подвижный контакт, если убрать неподвижный.



Рис. 7.6. Контактный узел с самоустанавливающимся контактом

На рис. 7.7 показана работа контактной системы, широко применяемой в контакторах с медными контактами.

Для наглядности точки начального и конечного касания обозначены буквами а и б. При включении контактный рычаг 4 вращается электромагнитом вокруг центра 02, а точка 0{вращения контактной скобы 3 перемещается по радиусу 020].

Касание пальцевых контактов 1 и 2 происходит в точках а (рис. 7.7,б). При дальнейшем перемещении Охточка касания переходит в точку b(рис. 7.7,в). При этом происходит перекатывание контакта 2 по контакту1 с небольшим проскальзыванием, за счет чего пленка оксида на них стирается.. При включении контактов, отключавших дугу, из-за шероховатости поверхности касания появляется дополнительная вибрация контактов. Для уменьшения вибрации проскальзывание должно быть небольшим. При отключении дуга загорается между точками аа, что предохраняет от оплавления точки bb, в которых контакты касаются уже во включенном положении. Таким образом, контакт разделяется на две части: в одной происходит гашение дуги, в другой ток проводится длительно. Поскольку для контактов по рис. 7.7 непосредственный контроль провала затруднен, о нем судят по зазору б' между рычагом 4 и контактной скобой 3. Контактное нажатие создается пружиной 5.


Рис. 7.7. Контактный узел с перекатыванием подвижного контакта

Во всех без исключения аппаратах имеется провал контактов, который обеспечивает их необходимое нажатие. Вследствие обгорания и износа контактов в эксплуатации провал уменьшается, что приводит к уменьшению контактного нажатия и росту переходного сопротивления. Поэтому при эксплуатации провал контактов должен контролироваться и находиться в пределах, требуемых заводом-изготовителем. Особенно это относится к аппаратам, работающим в режиме частых включений и отключений (контакторы), где износ контактов интенсивен. Допустимое уменьшение провала обычно составляет 50 % начального значения.

В торцевом мостиковом контакте (рис. 3.14) провал обычно составляет 3—5 мм. В мощных выключателях высокого напряжения он увеличивается до 8—10 мм.

В высоковольтных масляных выключателях широко применяется розеточная система (рис. 7.8). Неподвижный контакт состоит из пальцев (ламелей) 1, расположенных по окружности. Для уменьшения обгорания концы ламелей снабжены металлокерамическими наконечниками 2. Контактное нажатие создается пружинами 3. Ламели с помощью гибких связей 5 соединяются с медным цоколем 4. Параллельное соединение шести ламелей снижает переходное сопротивление контакта и облегчает работу контакта при токах КЗ, так как через ламель протекает примерно '/б полного тока контакта. Контактное нажатие обратно пропорционально квадрату числа ламелей. Подвижный контакт выполнен в виде стержня круглого сечения, движущегося поступательно. Конец стержня снабжен металлокерамическим наконечником.


Рис 7.8 Неподвижный розеточный контакт

Для главных контактов применяется щеточная система (рис. 7.9). Неподвижные контакты 1 выполняются в виде массивных медных призм, часто покрываемых серебром. Подвижные контакты выполнены в виде пакета эластичных медных пластин 2. Большое количество пластин создает многоточечный контакт с малым переходным сопротивлением. При нажатии на подвижный контакт происходит деформация пластин, скольжение линии касания по поверхности неподвижного контакта и разрушение пленки оксидов.


Рис. 7.9. Щеточные контакты

Широкое применение получили пальцевые самоустанавливающиеся контакты (рис. 7.10). Неподвижным контактом являются пальцы (ламели) /, выполняемые из меди. Пальцы крепятся к выводу 2 гибкими связями 3. Нажатие контактов создается плоскими пружинами 4. Для получения наибольшего числа площадок касания пружина 4 действует на контакт 1 через сферическую поверхность заклепки 5 (самоустанавливающийся контакт).

Если не имеется возможности подвижному контакту самоустанавливаться, то такой контакт называется не самоустанавливающимся (пружина 4 жестко соединена с контактом 1). Подвижный контакт выполнен в виде латунной призмы 6.

На рис. 7.11 показана двухступенчатая контактная система с главными 1–1 и дугогасительными 22' контактами. Главные контакты выполняются из меди, а поверхности их соприкосновения из серебра, нанесенного электролитически (слой 20 мкм) или в виде припаянных пластин. Дугогасительные контакты выполняются из меди и имеют наконечники из дугостойкого материала — вольфрама или металлокерамики.



Рис 7.10. Пальцевый самоустанавливающийся контакт

Ввиду того, что переходное сопротивление цепи главных контактов значительно меньше, чем дугогасительных, через них проходит 70—80 % длительного тока. При отключении вначале расходятся главные контакты и весь ток цепи замыкается по дугогасительным контактам.

Дугогасительные контакты 22' расходятся в тот момент, когда расстояние между главными контактами достаточно, чтобы выдержать наибольшее напряжение, возникающее в процессе гашения дуги на дугогасительных контактах.


Рис. 7.11.Двухступенчатая контактная система


Необходимо отметить, что при отключении больших токов на главных контактах может возникнуть дуга. Дело в том, что после размыкания главных контактов весь ток цепи начинает проходить через дугогасительную систему и на главных контактах появляется напряжение. Допустим, что дугогасительная система имеет сопротивление

и индуктивность
, а скорость нарастания тока в этой цепи
. Тогда напряжение на главных контактах может оказаться достаточным для пробоя промежутка между ними. Для уменьшения обгорания главных контактов необходимо уменьшать индуктивность L.