Схема реле и процесс заряда конденсатора показаны на рис. 15.9. Поскольку напряжение на базе транзистора стабилизировано, то коллекторный ток не зависит от напряжения на коллекторе (генератор тока). Ток заряда устанавливается резистором R1. Чем больше ток заряда, тем меньше выдержка времени. Стабилитрон VDделает неизменным напряжение на резисторе R1, что позволяет получить постоянное время срабатывания при данном положении движка потенциометра.
Рис. 15.9. Полупроводниковое реле времени:
в — принципиальная схема; б — процессы заряда / и разряда 2 конденсатора
С целью увеличения выдержки времени можно использовать заряд конденсатора от источника импульсного напряжения. При каждом импульсе напряжение на конденсаторе поднимается на небольшую величину, после чего во время паузы остается неизменным. Такое реле позволяет увеличить выдержку времени. Дело в том, что во время паузы напряжение на емкости не меняется и это
время паузы входит в выдержку времени реле. Тем самым уменьшается погрешность за счет нелинейности кривой заряда.ж) Цифровые реле времени. В цифровом реле времени управляющее устройство запускает генератор. Импульсы от генератора подаются на вход не-синхронизируемого двоичного счетчика. В момент совпадения кода времени с заданной уставкой сигнал дешифратора скачкообразно меняется и выходной импульс подается на усилители.
После каждого цикла счетчик переводится в нуль. Приведенная погрешность описанных реле времени не превышает 5 %. Коммутационная износостойкость составляет не менее 4*106 циклов.
Лекция №16
Тема лекции:
Бесконтактные контакторы и пускатели на базе тиристорных элементов.
Бесконтактные коммутирующие и регулирующие полупроводниковые устройства переменного тока (БКРПУ)а) Общие сведения. На основе тиристоров возможно осуществление следующих операций:
1) включение и отключение электрической цепи с активной и смешанной (индуктивной и емкостной) нагрузкой;
2) изменение тока нагрузки за счет регулирования момента подачи сигнала управления.
Наиболее широкое применение в бесконтактных электрических аппаратах получили фазовое и широтно-импульс-ное управление (рис. 16.1).
В первом случае среднее и действующее значения тока меняются зa счет изменения момента подачи на тиристор открывающего сигнала — за счет угла
. Угол называ ется углом управления. Действующее напряжение на нагрузке при двухполупериодной схеме и встречно-параллельном включении двух тиристоров (рис. 16.2)где Uт— амплитуда напряжения питания; Uc, Uно— действующее и среднее значения напряжения питания; у — угол регулирования.
Рис. 16.1. Напряжение на нагрузке при фазовом (а), фазовом с принудительной коммутацией (б) и широтно-импульсном (в) управлении
Рис. 16.2. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б)
Кривая тока в сети и в нагрузке не синусоидальна, что вызывает искажение формы напряжения сети и нарушения в работе потребителей, чувствительных к высокочастотным помехам. Для уменьшения этих искажений необходимы специальные меры.
При широтно-импульсном управлении (рис. 12.46, в) в течение времени Тоткр на тиристоры подан открывающий сигнал, они открыты и к нагрузке приложено напряжение UH. В течение времени Тзакр управляющий сигнал снят и тиристоры закрыты. Действующее значение тока в нагрузке
где
— ток нагрузки при Тзакр=0.Регулирование тока нагрузки возможно за счет изменения как угла
, так и угла . Принудительная коммутация ( <18О°) осуществляется с помощью специальных узлов или специальных тиристоров, которые могут запираться подачей сигнала управления. При больших токах из-за сложности такие схемы не применяются. Создание транзисторов на большие токи (сотни ампер) и большие напряжения (сотни вольт) позволяет упростить принудительную коммутацию цепей постоянного и переменного тока, что особенно важно в аппаратах повышенного быстродействия.На основе тиристоров работают следующие бесконтактные электрические аппараты:
1) тиристорные пускатели для прямого пуска асинхронных двигателей;
2) тиристорные пускатели для плавного пуска, реверса и останова асинхронных двигателей большой мощности (до 5000 кВт);
3) регуляторы мощности и напряжения;
4) автоматические выключатели переменного тока высокого и низкого напряжения повышенного быстродействия;