Смекни!
smekni.com

Электрическое поле (стр. 3 из 4)


. (1.4.2)

При предельном переходе объем V и его поверхность S стягиваются в точку наблюдения, в которой вычисляется дивергенция. Согласно (1.4.1), поток напряженности E через любую бесконечно малую сферу, внутри которой нет зарядов, – тождественный нуль. Поэтому из (1.4.2) следует, что в точках с нулевой плотностью зарядов (r=0) дивергенция E равна нулю. Рассмотрев поток через малую сферу V вокруг точки, в которой дивергенция напряженности не равна нулю, можно показать с помощью (1.4.1) и (1.4.2) , что в такой точке объемный заряд есть, поэтому точки, в которых дивергенция напряженности отлична от нуля, являются источниками силовых линий.

В курсе математики доказывается теорема Остроградского-Гаусса (была установлена К. Гауссом в 1844 независимо от М.В. Остроградского, доказавшего ее в 1839):

. (1.4.3)

Здесь V – произвольный объем, ограниченный поверхностью S. Применим теорему (1.4.3) к потоку электростатического поля. С учетом (1.4.1) получим:


. (1.4.4)

Из равенства интегралов ввиду произвольности объема V следует равенство подынтегральных выражений, т.е. теорема Гаусса в дифференциальной форме (А. Пуассон, 1850 г.):

. (1.4.5)

Из тех областей пространства, в которых дивергенция Е положительна, силовые линии Е исходят (r>0), в тех областях, где divE < 0 силовые линии заканчиваются (r<0), а через те области, где divE = 0 силовые линии проходят, но не рождаются и не исчезают, так как в этих областях r=0 (зарядов нет).

Циркуляция и ротор векторного поля. Градиент скалярной функции

Циркуляция СLпроизвольного векторного поля F(x,y,z) по замкнутому контуру L определяется следующим соотношением:

, (1.5.1)

где Fl – проекция вектора F на направление элемента контура dl (см. рис. 1.5.1).

Ротор – это еще одно понятие из математической теории векторных полей. В декартовой системе координат (x,y,z) ротор F (обозначение «rotF») определяется как вектор, компоненты которого равны определенным комбинациям пространственных производных вектора F, именно:

(1.5.2)

Физический смысл ротора следует из равенства, доказываемого в курсе математики:

. (1.5.3)

Здесь n – нормаль к площадке S, L – контур, ограничивающий эту площадки, который при этом предельном переходе стягивается в точку наблюдения

. Если ротор векторного поля в некоторой точке наблюдения не равен нулю, то в любой достаточно малой окрестности этой точки силовые линии поля образуют микроскопические замкнутые контура вокруг нее («завихряются»). Поэтому область, где ротор векторного поля отличен от нуля, называют вихрем поля, а само поле, ротор которого отличен от нуля называется вихревым. Скорость движения потоков жидкости или газа, рассматриваемая как функция координат, является наглядным примером векторного поля. Турбулентности в жидкости или газе образуются именно вокруг точек, в которых отличен от нуля ротор скорости потока жидкости (газа). Изображение поля с помощью силовых линий в области пространства, где ротор отличен от нуля (точно так же, как и в точках с ненулевой дивергенцией), невозможно.

Как будет видно из дальнейшего, циркуляция и ротор электростатического поля, тождественно равны нулю во всем пространстве. Поэтому электростатическое поле – это относительно простое силовое поле. Такими же свойствами обладает и гравитационное поле.

Понятие градиента уже вводилось в курсе механики. Напомним его. Градиент функции f(x,y,z), зависящей от координат – это вектор, декартовы компоненты которого являются пространственными производными функции f :

. (1.5.5)

Пусть

. Можно показать, что тогда необходимо и достаточно, чтобы ротор
был равен нулю:

. (1.5.6)

Потенциальность электростатического поля. Электрический потенциал

Работа поля по переносу пробного q заряда из некоторой точки 1 в некоторую точку 2 не зависит от траектории его движения и определяется для данного поля и данного заряда только координатами этих точек. Для случая, когда источником поля является точечный заряд Q (рис. 1.6.1) это нетрудно обосновать следующим образом. Работа на элементарном отрезке траектории, по известному из механики определению, есть:

. Раскрывая скалярное произведение векторов через угол a между ними, получаем

. (1.6.1)

Суммируя (интегрируя) все элементарные работы, находим

, (1.6.2)

что и требовалось доказать. Работа определяется только расстояниями от источника до начальной и конечной точки траектории. Такое силовое поле в механике мы называли потенциальным.

Из принципа суперпозиции следует потенциальность электростатического поля, созданного любой системой зарядов. Из (1.6.2) и принципа суперпозиции следует также, что работа электростатических сил над зарядом, перемещаемым по замкнутому контуру, равна 0:

. (1.6.3)

Таким образом, для любого контура в электростатическом поле циркуляция напряженности – тождественный нуль. В соответствии с утверждением (1.5.6) напряженность электростатического поля (с точностью до знака) может быть истолкована как градиент некоторой функции координат, называемой потенциалом электростатического поля

:

. (1.6.4)

Используя определение напряженности электростатического поля (1.2.1) и формулу связи между силой F и потенциальной энергией W, известную из курса механики

, (1.6.5)

из (1.6.4) получим, что потенциал поля в данной точке наблюдения численно равен потенциальной энергии пробного заряда q, помещаемого в данную точку, отнесенной к величине этого заряда:

. (1.6.6)

Потенциальная энергия электростатического поля, как и энергия поля сил тяготения, определяется с точностью до произвольной постоянной, которую можно зафиксировать выбором точки нулевого уровня для W. Как правило, потенциальная энергия электростатического поля полагается равной нулю в бесконечно удаленной точке.

Из формулы (1.6.4) путем интегрирования нетрудно получить формулу, связывающую потенциал с напряженностью:

. (1.6.7)

Интегрирование в (1.6.7) можно проводит по любой кривой соединяющей точки 1 и 2.


Рассмотрим в пространстве, где имеется электростатическое поле, мысленную поверхность, перпендикулярную силовым линиям. При вычислении интеграла (1.6.7) по любой траектории 1–2, лежащей на этой поверхности, касательная Et компонента Е равна нулю. Следовательно, для любых двух точек 1 и 2 этой поверхности правая часть (1.6.7) равна нулю, потенциалы j(r1) и j(r2) одинаковы. Поверхность, во всех точках которой потенциал имеет одинаковую величину, называется эквипотенциальной. Таким образом, поверхность перпендикулярная к силовым линиям является эквипотенциальной.

В общем случае разность потенциалов между точками 1 и 2 равна разности потенциалов эквипотенциальных поверхностей, которым принадлежат эти точки. Последнюю можно найти, проводя интегрирование в формуле (1.6.7), по силовой линии, соединяющей точки 1¢ и 2¢ этих эквипотенциальных поверхностей. При этом фактически под интегралом будет модуль Е электрической напряженности, т.к. на силовой линии

. В заключение для потенциала поля точечного заряда Q приведем формулу, которая следует из сравнения формул (1.6.2) и (1.6.6) и известного из курса механики соотношения между работой A12 потенциальных сил на участке 1–2 траектории частицы и потенциальной энергией частицы в начале W1 и в конце W2 этого участка:

. (1.6.8)