Возьмем два параллельных круглых проводника 1 и 2 (рис. 4), расположенных в одной плоскости на расстоянии друг от друга и обтекаемых токами i1 и i2. Расчет будем производить первым методом. Проделав все операции аналогично выражениям (2) — (8) и учитывая, что sin β = 1, так как проводники расположены в одной плоскости, и вектор индукции в данном случае перпендикулярен этой плоскости (β=90°), получим
, (15)где
Выразим подынтегральные переменные второго интеграла через одну из переменных, а именно через угол α. Примем за начало координат элемент dyи направление токов, совпадающее с положительным направлением координат. В этом случае текущая координата
(16)Подставив полученные выражения в уравнение (15) и считая, что проводник 2 распространяется от — ∞ до + ∞, чему соответствует изменение угла α от π до 0, получим
(17)Очевидно, если проводник 1 (l1), так же как и проводник 2, распространяется до ±∞, то с будет стремиться к бесконечности.
Если проводник 1 имеет конечную длину, то
(18)Согласно выражению (8) сила, действующая на проводник 1, равна
(19)Уравнение (19) определяет силу взаимодействия между двумя проводниками, один из которых бесконечно длинен, а второй имеет конечную длину l и расположен симметрично относительно первого. В случае, когда оба проводника будут иметь конечную длину l, пределы интегрирования для выражения (17) будут уже не от π до 0, а от α 2 до α 1 (см. штриховые линии на рис. 4) и сила взаимодействия между двумя круглыми проводниками конечной и равной длины определится уравнением
. (20)В уравнении (20) множитель перед скобками представляет собой силу взаимодействия между двумя проводниками, один из которых имеет бесконечную длину. Обозначим эту силу через F∞. Коэффициент, заключенный в скобках, представляет собой величину, меньшую единицы. При α/1<0,2 (в практике, как правило, α/1<< 0,2) величиной (α/l)2по отношению к единице можно пренебречь. Тогда уравнение (20) примет вид (21)
(21)В практике весьма часто проводники имеют неравную длину. Силу взаимодействия между такими проводниками можно найти изложенным выше способом, производя интегрирование каждый раз в соответствующих пределах. Можно эту задачу решить, применив уравнение (20).
На рис. 5 приведены два проводника неравной длины l1 и l2, расположенные друг от друга на расстоянии а и обтекаемые токами i1 и i2. Нарастим проводник l2 на отрезок l3 до длины, равной l1.Проводник l1можем также представить состоящим из двух отрезков l2 и l3. Тогда можем написать, что сила взаимодействия между проводниками длиной l1 и l2(Fl1l2) равна сумме сил взаимодействия между двумя проводниками l2 одинаковой длины (Fl2l2) и двумя проводниками длиной l2 и l3(Fl2l3):
(22)Аналогично можно написать
(23)Сложив уравнения (22) и (23), получим
(24)Таким образом, сила взаимодействия между двумя проводниками неравной длины выражается через силу взаимодействия проводников равной длины:
(25)При этом l1 и l2 — величины заданные, а l3= l1 - l2.
Сила взаимодействия между круглыми параллельными проводниками может быть также определена по изменению запаса электромагнитной энергии.
Первый случай — оба проводника принадлежат к одной системе. Индуктивность системы из двух параллельных проводников радиусом rи длиной l, находящихся на расстоянии а, при условии, что l>> а, определяется формулой
(26)Нас интересует сила, действующая в направлении а. Согласно выражению (13)
(27)из уравнения (26)
тогда
(28)Из выражения (28) видно, что результат получился таким же, как и при определении этих сил, первым методом.
Второй случай — проводники принадлежат к двум различным системам, при этом сами системы не претерпевают деформации. Взаимная индуктивность между двумя проводниками длиной l, находящимися друг от друга на расстоянии а, при условии, что l >> а, определяется формулой
(29)Согласно формуле (13) сила, действующая в направлении а,
где
так как сами системы не претерпевают деформации, а из выражения (29)
Тогда
(30)т.е. результат, как и следовало, получился тот же.
Для двух параллельных проводников, расположенных с любым сдвигом, Г.Б. Холявский получил удобную для расчета коэффициента контура формулу, основанную на геометрической интерпретации приведенных выше уравнений.
Величина представляет собой длину диагонали D(рис. 6) прямоугольника со сторонами l и а; следовательно, согласно уравнению (20) для проводников равной длины
(31a)а согласно уравнению (25) для проводников неравной длины (рис. 7)
(31б)т.е. коэффициент контура равен разности суммарных диагоналей и боковых сторон четырехугольника (прямоугольник, трапеция, параллелограмм), построенного на данных отрезках проводников, деленной на его высоту.
Для проводников прямоугольного сечения (шин) следует вводить поправочный коэффициент — коэффициент формы kф, зависящий от размеров проводников и расстояний между ними:
(32)4. Электродинамические силы между взаимно перпендикулярными проводниками
На рис. 8 и 9 приведены часто встречающиеся в аппаратах формы перпендикулярно расположенных проводников, например в рубильниках, мостиковых контактных системах и многих других аппаратах и узлах. Произведя расчеты, аналогичные предыдущим (первый метод), получим следующие выражения для сил, действующих на проводник 1 по рис.8
при h →∞
и при hконечном
(34)по рис. 9 сила будет соответственно в два раза большей:
(35) (36)Моменты относительно точки О, действующие на проводник 1 (h →∞), по рис. 8:
(37) (38)Момент относительно точки О, действующий на половину проводника 1 (рис. 9),
(39)В кольцевом витке (рис. 10) с током i возникают радиальные силы fR, стремящиеся увеличить его периметр, т.е. разорвать виток. Если считать, что сечение проводника не деформируется, то согласно выражению (13) общая радиальная сила, действующая на виток, будет