Смекни!
smekni.com

Электродинамические усилия в электрических аппаратах (стр. 1 из 4)

Электродинамические усилия в электрических аппаратах


Содержание

1. Основные понятия.......................................................................................... 2

Возникновение электродинамических сил........................................................ 2

Направление действия силы.............................................................................. 3

2. Методы расчета электродинамических сил.................................................. 4

Первый метод..................................................................................................... 4

Второй метод..................................................................................................... 6

3. Электродинамические силы между параллельными проводниками.................................................................................................... 8

Бесконечной длины............................................................................................ 8

Конечной длины................................................................................................ 9

Неравной длины.............................................................................................. 10

4. Электродинамические силы между взаимно перпендикулярными проводниками............................................................... 15

5. Электродинамические силы в кольцевом витке и между кольцевыми витками........................................................................................ 17

Для одного витка............................................................................................. 17

Для нескольких витков.................................................................................... 18

6. Электродинамические силы в проводниках переменного сечения.............................................................................................................. 20

7. Силы взаимодействия между проводником с током и ферромагнитной массой.................................................................................. 21

Вблизи ферромагнитной массы...................................................................... 21

Внутри ферромагнитной массы...................................................................... 22

8. Электродинамические силы при переменном токе.................................... 24

При однофазном токе...................................................................................... 24

При расположении проводников в одной плоскости.................................... 26

При расположении проводников правильным треугольником.................... 28

1. Основные понятия

Действие электродинамических сил на аппараты

При нормальных эксплуатационных условиях электродинамические силы, как правило, малы и не вызывают каких-либо деформаций, а тем более поломок деталей в аппаратах. Однако при коротких замыканиях эти силы достигают весьма больших значений и могут вызвать деформацию или разрушение не только отдельных деталей, но и всего аппарата. Это обстоятельство требует проведения расчета аппарата (или отдельных его узлов) на электродинамическую устойчивость, т.е. на способность выдержать без повреждений прохождение наибольшего возможного в эксплуатационных условиях (или заданного) тока короткого замыкания. Такой расчет тем более необходим ввиду того, что с целью получения минимальных габаритов в аппаратах стремятся располагать токоведущие части как можно ближе друг к другу.

Так как переменный ток при отсутствии апериодической составляющей отличается от постоянного изменением силы тока и направлением изменяющихся по синусоидальному закону, то и электродинамическая сила будет иметь переменное значение.

Для упрощения рассмотрим электродинамические силы, возникающие в различных частях электрического аппарата при постоянном токе. Далее, оценим их влияние на электрический аппарат в различных ситуациях при трехфазном переменном токе.

Возникновение электродинамических сил

Обтекаемый током iпрямолинейный проводник длиной l(рис. 1), расположенный в магнитном поле с индукцией В, испытывает механическую силу

(1)

где β- угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Рис. 1.

Для системы из нескольких обтекаемых током проводников можно всегда представить, что любой из этих проводников расположен в магнитном поле, созданном токами других проводников, и соответствующим образом взаимодействует с этим полем, т. е. между проводниками, охваченными общим магнитным потоком, всегда возникают механические силы. Эти силы называются электродинамическими.

Аналогичные силы возникают между проводником, обтекаемым током, и ферромагнитной массой.

Направление действия силы

Направление действия силы определяется «правилом левой руки».

Направление действия силы может быть также определено из следующего общего положения: силы, действующие в контуре с током, стремятся изменить конфигурацию контура так, чтобы охватываемый контуром магнитный поток увеличился.

Удобным для определения направления действия электродинамической силы является метод, предложенный академиком В.Ф. Миткевичем, основанный на представлении бокового распора и тяжения магнитных линий.

Рисуют и накладывают друг на друга картины магнитных полей, создаваемых током каждого из проводников. Благодаря боковому распору магнитных силовых линий сила, действующая на проводник, направлена в сторону, где поле ослаблено (рис. 2).

2. Методы расчета электродинамических сил

Расчет электродинамических сил ведется обычно либо на основании закона взаимодействия проводника с током и магнитным полем (первый метод), либо по изменению запаса магнитной энергии системы (второй метод).

Первый метод

Расчет электродинамических сил на основании закона взаимодействия проводника с током и магнитным полем. Возьмем систему из двух произвольно расположенных проводников 1 и 2 (рис. 3), обтекаемых токами i1 и i2.Напряженность магнитного поля, создаваемого элементом dyпроводника 2 в месте расположения элемента dxпроводника 1, будет

(2)

где α — угол между вектором ρ и направлением тока по элементу dy.

Весь проводник 2 создает в месте расположения элемента dxнапряженность магнитного поля

(3)

Элементарная сила, действующая на элемент dx, обтекаемый током i1

(4)

где ρ — угол между вектором магнитной индукции В = μ0Hdxи вектором тока i1;

μ0 магнитная проницаемость воздуха.

Полную силу Fвзаимодействия между проводниками 1 и 2 получим после интегрирования dFdxпо всей длине проводника 1:

(5)

Считая токи i1 и i2неизменными по всей длине проводника, уравнение (5) можно переписать в виде произведения членов:

(6)

Первый член этого выражения зависит только от значений токов. Второй член зависит только от взаимного геометрического расположения проводников и представляет собой безразмерную величину. Эту величину часто называют коэффициентом контура, который обозначим буквой с. Тогда

(7)

т.е. сила взаимодействия между двумя проводниками, обтекаемыми токами i1 и i2, пропорциональна произведению этих токов (квадрату тока при i1 = i2) и зависит от геометрии проводников.

Подставив в уравнение (7) значение μ0 = 4π10-7 и вычисляя силу в ньютонах, получим

(8)

Второй метод

Расчет электродинамических сил по изменению запаса электромагнитной энергии контуров. Электромагнитное поле вокруг проводников и контуров с током обладает определенным запасом энергии. Электромагнитная энергия контура, обтекаемого током i,

(9)

Электромагнитная энергия двух контуров, обтекаемых токами i1 и i2,

(10)

где L1,L2индуктивности контуров; М — взаимная индуктивность контуров.

Всякая деформация контура (изменение расположения отдельных его элементов или частей) или изменение взаиморасположения контуров приводят к изменению запаса электромагнитной энергии. При этом работа сил в любой системе равна изменению запаса энергии этой системы:

(11)

здесь dWизменение запаса энергии системы при деформации системы в направлении х под действием силы F.

На указанном законе (11) и основан второй метод определения электродинамических сил в контурах. Электродинамическая сила в контуре или между контурами, действующая в направлении х, равна скорости изменения запаса энергии системы при деформации ее в том же направлении:

(12)

Согласно сказанному электродинамическая сила в контуре, обтекаемом током i,

(13)

а электродинамическая сила между двумя взаимосвязанными контурами с токами i1 и i2 будет

(14)