Смекни!
smekni.com

Электромагнитные волны (стр. 2 из 4)

(4.13[4])

Расположим элементарный электрический вибратор в сферической системе координат (см. рис.4). Теперь с помощью (4.3[4]) определим напряженность магнитного поля электрического излучателя:

Рис. 4. Расположение вибратора в сферической системе координат

· Из векторной математики. Операция rot в сферической системе координат некой векторной величины

:

где:

– единичные векторы

Вычисление операции rot проводим в сферической системе координат. Обратив внимание в (4.13[4]) на то, что

зависит только от r (и не зависит от j и q), в результате получим:

(4.14[4])

Величину напряженности электрического поля вне области, содержащей источники сто-ронних сил, проще всего определить из первого уравнения Максвелла (причем будем полагать, что среда в этой области хороший диэлектрик, s» 0):

,

отсюда:

. Раскрывая операцию rot в сферической системе координат, получим:

(4.15[4])

Из полученных уравнений (4.14[4]) и (4.15[4]) несложно заметить, что составляющие электромагнитного поля электрического излучателя зависят от расстояния r. Вследствие этого принято различать ближнюю и дальнюю зоны излучателя.

Рассмотрим поле в ближней зоне:

Этот случай характеризуется тем, что расстояние r от излучателя значительно меньше длины излучаемой волны l, т.е. r <<l.

Поскольку:

,

где:

– скорость света;

e, m – относительная диэлектрическая и магнитная проницаемости воздуха (равные единице),

то условие r<<l означает что:

Тогда из (4.14[4]) и (4.15[4]) получаем следующие комплексные значения составляющих электромагнитного поля в ближней зоне:


(4.16[4])

Перейдем от комплексных значений к мгновенным, (т.е. возьмем вещественную часть от приведенных выражений)

(4.17[4])

На основании (4.17[4]) можно отметить следующие основные свойства электромагнитного поля элементарного электрического излучателя в ближней зоне:

1. Составляющие электромагнитного поля убывают в зависимости от расстояния r по разному: амплитуда электрического поля по закону 1/r3, амплитуда магнитного – по закону 1/r2.

2. Поскольку sin(wt) = cos(wt - p/2), то это означает, что электрическое и магнитное поля сдвинуты во времени по фазе на 900.

3. Определим вектор Пойнтинга в ближней зоне (т.е. плотность потока мощности, выходящего сквозь замкнутую поверхность S вокруг вибратора). Из (4.17[4]) следует, что вектор Пойнтинга будет иметь две составляющие:


и
.

Мгновенные значения:

Отсюда видно, что обе составляющие вектора Пойнтинга изменяются во времени по закону sin(2wt) , т.е. принимает как положительные, так и отрицательные мгновенные значения. Очевидно, что среднее значение составляющих вектора

за период колебаний Т будет равно нулю. Это означает, что движение энергии ближнего поля имеет колебательный характер – в течение четверти периода Т (поскольку 2w) энергия движется в одном направлении, в течение следующей четверти периода энергия движется в противоположном направлении.

Вывод: Таким образом, ближнее электромагнитное поле не участвует в процессе излучения и имеет характер квазистационарного поля. Поясним сказанное рис.5 на примере струны, закрепленной на бесконечности.

Рис.5 Пример, поясняющий характер процесса в "ближней" и "дальней" зоне. Видно, что относительно распространения волны (ось z) в "ближней" зоне преобладает колебательный характер, тогда как в " дальней" зоне – волновой характер


Ближнюю зону называют также зоной индукции.

Рассмотрим теперь поле в дальней зоне. Этот случай характеризуется тем, что r>>l, и соответственно, kr>> 1. Используя это, можно записать:

Тогда из (4.14[4]) и (4.15[4]) получаем следующие комплексные значения составляющих электромагнитного поля в дальней зоне:

(4.18[4])

Перейдем от комплексных значений к мгновенным:

(4.19[4])

Исходя из (4.19[4]) отметим следующие основные свойства электромагнитного поля элементарного электрического излучателя в дальней зоне:

1. Амплитуды электрического и магнитного полей убывают одинаково по закону 1/r.

2. Электрическое и магнитное поля изменяются в одинаковой фазе:


(wt–kr) = w(t – r

) = w(t – r
) = w(t – r
) = w(t –
), (4.20[4])

где:

- называют фазовой скоростью.

3. Вектор Пойнтинга в дальней зоне имеет только одну составляющую:

.

Мгновенное значение:

Re

= Еqmcos(wt – kr)Hjmcos(wt – kr) = EqmHjmcos2(wt – kr).

Таким образом, мгновенное значение вектора Пойнтинга всегда оказывается положительным. Это, в свою очередь, означает, что энергия движется только в одном направлении – от излучателя и поэтому представляет собой энергию излученной электромагнитной волны.

4. Вернемся к фазе составляющих электромагнитного поля излучателя (wt – kr) = w(t – r/v). Заметим, что она зависит как от времени t, так и от расстояния r. Из курса общей физики известно, что любой процесс, описываемый уравнением вида: А = Аmcos(х), есть волновой процесс. Следовательно, исходя из (4.19[4]), заключаем, что электромагнитное поле в дальней зоне представляет собой электромагнитную волну, изменяющуюся во времени и в пространстве. Причем векторы

и
лежат перпендикулярно к направлению распространения r (т.к. у них индексы q и j) находятся в фазе и взаимно перпендикулярны друг к другу.

К основным параметрам элементарного электрического излучателя обычно относят:

- диаграмму направленности;

- мощность и сопротивление излучения.

На практике, как правило, основной интерес представляет дальняя зона излучения, поэтому данные параметры будут рассматриваться лишь применительно к этой зоне.

Диаграммой направленности называют зависимость нормированной амплитуды напряженности поля излучателя в дальней зоне от направления (т.е. от угловых сферических координат q и j) при постоянном расстоянии от излучателя (т.е. при r = const):

,

где: Еmmaxmmax – максимальное амплитудное значение Еm(q,j) и Нm(q,j), соответственно.

Из (4.19[4]) имеем, что максимальное значение, например Еm(q,j), при изменении q и j соответствует:

.

Следовательно, диаграмма направленности элементарного электрического излучателя:

, (4.21[4])

и не зависит от угла j. Максимум излучения лежит в экваториальной плоскости вибратора (q=900); вдоль его оси излучения нет. В сферической системе координат диаграмма направленности представляет собой пространственную фигуру в виде тора (см. рис.6).


Рис. 7. Диаграмма направленности элементарного электрического излучателя

Определим теперь среднее значение вектора Пойнтинга элементарного элек-трического вибратора в предположении, что по излучателю длиной l протекает переменный ток I с частотой w. Для переменных (т.е. гармонических) полей Пср определяется выражением (3.18[4]):