Смекни!
smekni.com

Электроснабжение фермы КРС на 800 голов в ОАО "Петелино" Ялуторовского района Тюменской области с обеспечением нормативных условий надежности (стр. 7 из 11)

n = Pmax/(0,9∙Pэ) (3.11)

Для нашей расчетной ТП №2237 с максимальной нагрузкой Pmax = 300 кВт количество дизельных электростанций АСДА–400


n =

3.6Подключение автоматизированного ДЭС

Рис. 3.2 Схема соединений генератора автоматизированной ДЭС


Обмотка статора G выполнена также, как у других генераторов ДЭС. У ротора явно выраженные полюса. На нем размещена обмотка возбуждения GL генератора, получающего питание от статистической системы. Ток в обмотке возбуждения регулируется шунтовым реостатом R2. В цепь возбуждения включен резистор RV гашения магнитного поля генератора. Сопротивление дишунтируется при отключении генератора системной защиты, а также для включения генератора на параллельную работу – методом самосинхронизации. На рисунке 2.1. показаны не все обмотки системы возбуждения и регулирования напряжения генератора. Обмотка силового трансформатора Т (у генераторов ЕСС-5 она уложена в пазы статора вместе с основной обмоткой G) и трехфазный выпрямитель UZ – это силовая цепь питания обмотки возбуждения. При вращении ротора за счет остаточного магнетизма в его полюсах и в стали статора образуется начальная ЭДС в обмотках G и Т, но она недостаточна для того, чтобы открылся выпрямитель UZ. Поэтому начальное возбуждение создается подачей импульса тока в обмотку возбуждения по цепи GB от аккумулятора или с помощью резонансовой системы, магнитно связанной с системой возбуждения. Обмотка ТV используется в блоке регулятора возбуждения, который на схеме не показан. Он подключен к выводам GB. Включение генератора и его защита от внешних КЗ осуществляется автоматическим выключателем QF. Для питания измерительных приборов установлены трансформаторы тока ТА! – ТА3; вольтметр PV и частометр PF подключаются непосредственно к генераторному напряжению. Точность синхронизации контролируют лампами III. Для управления генератором и распределения нагрузки установлен специальный щит.


4. Разработка однолинейной схемы электроснабжения

Электрической схемой главных соединений предусматривается автоматическая работа электроагрегата на электрическую сеть напряжением 380 В.. Параллельная работа ДЭС с основным источником централизованного электроснабжения не допускается. Типовым проектом предусматривается четыре варианта электрических схем связи ДЭС с сетью напряжением 380 В централизованного электроснабжения. При выборе варианта следует учитывать проектируемую или существующую схему внутри площадочных сетей 380 В, расположение резервных потребителей на объекте, место расположения ТП 10/0,4 кВ, организацию обслуживания сетей 380 В на объекте.

Ниже представлена однолинейная схема из одного варианта схемы электрических соединений ДЭС и связи электроагрегата с сетью 380 В группы резервных потребителей с распределительным пунктом.

Состав схемы:

Т – трансформатор 10/0,4 кВ,

S2 – рубильник,

FU – плавкий предохранитель,

Шины 0,4 кВ,

Д – кабельная вставка,

S1 – переключающий рубильник,

QF – автоматический выключатель,

ТА – трансформатор тока,

PI – счетчик электрический,

G – генератор.


Рис. 4.1 Схема электрических соединений ДЭС.

Помещение ДЭС располагают вблизи производственного помещения с вводным РП. Этот вариант обеспечивает как групповое, так и индивидуальное резервирование ответственных приемников. Электроагрегат подключает к шинам 0,4 кВ РП через распределительное устройство Д1 с переключающим рубильником 1. Устройство Д1 устанавливают в в помещении распределительного пункта РП Щит собственных нужд ДS подключен к РП.

В нормальном режиме работы питание основных потребителей осуществляется от внешнего источника электроснабжения – трансформаторной ПС через переключающий рубильник и распределительный пункт РП. Рукоятка рубильника S1 устанавливается в положении «Q» - «включена сеть».

В аварийном режиме работы при исчезновении напряжения от ТП запускают (вручную) Электроагрегат. Рукоятку рубильника S1 устанавливают в положении «S» - «включена ДЭС».

Электрическая схема КТП 10/0,4 кВ мощностью 400 кВ состоит: из разъединителя 10 кВ РЛНД с заземляющими ножами, установленного на ближайшей опоре линии 10 кВ; вентильных разрядников для защиты оборудования от атмосферных и коммутационных перенапряжений на стороне 10 кВ и предохранителей, установленных в одном устройстве высшего напряжения, обеспечивающих защиту трансформатора от многофазных КЗ.

Предохранители соединены соответственно с проходными изоляторами и силовым трансформатором. Остальная аппаратура размещается в нижнем отсеке (шкафу), т.е. РУ 0,4 кВ. На вводе РУ 0,4 кВ установлены рубильник, вентильные разрядники для защиты от перенапряжений на стороне 0,4 кВ, трансформаторы тока, питающие счетчики активной энергии и трансформаторного тока, к которым подключено тепловое реле, обеспечивающее защиту силового трансформатора от перегрузки. Включение, отключение и защита отходящих линий 0,4 кВ от КЗ и перегрузки осуществляется автоматическими выключателями. При этом для защиты линий от однофазных КЗ в нулевых проводах ВЛ 0,4 кВ установлены токовые реле.


5. Выбор сечения проводов ВЛ-10 кВ

Электрический расчет линии 10 кВ производится с целью выбора марки Ии сечения провода и определение потерь напряжения и энергии. Сечение проводов выбирается нагрузки с учетом надежности.

Выбираемое сечение проводов проводится:

по допустимому нагреву.

(5.1)

по потере напряжения

(5.2)

Определяем рабочий ток линии

(5.3)

Где Sрасч – расчетная полная мощность, кВа,

Uном – номинальное напряжение, кВ.

Питание потребительских ПС10/0,4 кВ осуществляется от одной линии.

∑S = SТП = 354,6 кВа.

Сечение провода определяется по экономической плотности тока.

(5.4)

где jэк – экономическая плотность тока, А/мм2. jэк = 1,1 А/мм2 []

Согласно ПУЭ для III климатического района по гололеду принимаем провод АС сечение провода должно быть не менее 50 мм2. Выбираем провод АС-50.

Iдоп = 210 А.

Iдоп = 210 А > Ipmax = 20?5 А.

Условие выполнено.

Рассчитываем потери напряжения в линии

(5.5)

где Рр, Qр – мощности активная и реактивная, Вт,

- длина линии, км,

Х0 – реактивное сопротивление линии, Ом/км, Х0 = 0,40 Ом/км. []

R0 – активное сопротивление линии, Ом/км. R0 = 0,60 Ом/км. []

∆Uдоп = - 6% ≥ 1,28%.


Определяем потери электроэнергии на линии.

(5.6)

где Ipmax – рабочий ток линии,А

R0 – активное сопротивление линии, Ом/км,

τ – время максимальных потерь, час, τ = 1450 час. [].

Потери энергии в линии, %.

(5.7)

где Wгод – годовое потребление энергии. Wгод = Ррасч∙Тmax.

Тmax – время использования максимальной мощности. Тmax = 2700 час.

.

Потеря энергии в трансформаторе, %.

(5.8)

где ∆Wт – потеря энергии в трансформаторе. []

.

Рассчитаем линию 0,4 кВ.

Разбиваем нагрузку не две линии.

Линия 1, 3 -

Линия 2 -

Расчет линии 0,4 кВ ведем методом интервалов.

Определим эквивалентную мощность:

Sэквив1 = Sр1∙Кд(5.9)

Где Кд – коэффициент динамики роста. Кд = 0,7 [].

Sэквив1 = 152∙0,7=106,4 кВа

Sэквив2 = 203,8∙0,7=143 кВа.

Выбираем провод А-50.


6. Расчет токов КЗ

Расчет токов короткого замыкания необходим для выбора аппаратуры и проверки элементов электроустановок на электродинамическую и термическую устойчивость, проектирования и наладки релейной защиты.

Расчет токов КЗ начинаем с выбора расчетной схемы, на которой указывается марки проводов и их сечение, длина линий, силовые трансформаторы их мощность.

На расчетную схему наносим точки КЗ.


Рис. 6.1 Расчетная схема замещения

На схеме замещения указываются индуктивные и реактивные сопротивления основных элементов системы, линии, трансформаторов.

На схеме расставляются точки КЗ. Расчет ведем методом именнованных единиц. Принимаем базисное напряжение средненоминальное напряжение одной ступени