На первый взгляд кажется, что, помимо нейтронов и протонной, ядра должны содержать также позитроны и электроны, т. к. многие ядра радиоактивных изотопов излучают эти частицы. Но детальный анализ показал, что в ядре отсутствуют и электроны, и позитроны. Но если позитроны и электроны в готовом виде в ядре не присутствуют, то в процессе распада ядра, сопровождающегося вылетом одной из этих частиц, они образуются заново за счёт превращений внутри ядра. При этом при вылете позитрона (положительного заряда) один из протонов превращается в нейтрон, а при вылете электрона (отрицательного заряда), наоборот, один из нейтронов делается протоном.
Устойчивые (нерадиоактивные) лёгкие ядра содержат примерно равные количества протонов и нейтронов. В тяжёлых ядрах имеется некоторый перевес в числе нейтронов; так, в ядре свинца нейтронов примерно в полтора раза больше, чем протонов. Соотношение чисел нейтронов и протонов, которое осуществляется в устойчивых ядрах, является наиболее выгодным, придающим ядру особую прочность. Отступления от этого соотношения делают ядро неустойчивым.
Взаимодействие нуклонов в ядре
Ядерные силы – особые силы, действующие между частицами, образующими атомные ядра (нейтронами и протонами). Опыты привели к заключению, что ядерные силы взаимодействия между парами частиц протон-протон, нейтрон-протон, нейтрон-нейтрон одинаковы. В явлениях, зависящих только от ядерных сил, нейтрон и протон ведут себя подобно. Эти две частицы объединяют общим термином нуклон.
Наиболее характерной особенностью ядерных сил является короткодействие – они достигают очень большой величины при сближении нуклонов на расстояние порядка 10-13 см, но при увеличении этого расстояния всего в несколько раз так сильно спадают, что ими можно пренебречь.
На малых расстояниях ядерное взаимодействие приблизительно на два порядка сильнее электрического. При больших расстояниях положение обратное: ядерное взаимодействие протонов ничтожно слабо по сравнению с электрическим.
Нуклон создаёт в окружающем пространстве поле ядерных сил, и это поле действует на другие нуклоны, попадающие в сферу его влияния. В 1935 г. японский физик Х. Юкава предположил, что подобно электромагнитному полю ядерное поле бывает не только связанным, но и свободным, т. е. существуют кванты ядерного поля. Он показал, что малый радиус действия ядерного поля связан с тем, что кванты этого поля обладают отличной от нуля массой покоя. Чем больше масса покоя, тем меньше сфера действия сил. Позже, при исследовании космических лучей были открыты частицы, названные пи-мезонами, которые и являются квантами ядерного поля.
Основные характеристики элементарных частиц: масса, электронный и барионный заряд, время жизни и их античастицы, а также систематика частиц представлены в таблице.
Класс частиц | Частицы | Символ | Барионный заряд | Эл. заряд | Масса | Время жизни | Анти-частица | Символ |
Фотон | фотон | γ | 0 | 0 | 0 | стабилен | - | - |
Лептоны | электрон | e- | 0 | -1 | 1 | стабилен | позитрон | e+ |
мюон | μ- | 0 | -1 | 207 | 2,2*10-6 | мю-плюс-мезон | μ+ | |
электронный нейтрино | νe | 0 | 0 | 0 | стабилен | электронный антинейтрино | νe | |
мюонный нейтрино | νμ | 0 | 0 | 0 | стабилен | мю-антинейтрино | νμ | |
Адроны (мезоны) | пи-нуль | π0 | 0 | 0 | 264 | 10-16 | - | - |
пи-плюс | π+ | 0 | 1 | 273 | 2,6*10-8 | пи-минус | π- | |
эта-мезон | η | 0 | 0 | 1070 | 2,5*10-19 | - | - | |
ка-плюс | К+ | 0 | 1 | 966 | 1,2*10-8 | ка-минус | K- | |
кА-нуль короткоживущий | K0s | 0 | 0 | 974 | 0,9*10-10 | |||
кА-нуль долгоживущий | K0L | 0 | 0 | 974 | 5,7*10-8 | |||
Адроны (барионы) | протон | p | 1 | 1 | 1836 | стабилен | антипротон | p |
нейтрон | n | 1 | 0 | 1838,6 | 103 | антинейтрон | n | |
лямбда | Λ | 1 | 0 | 2183 | 2,5*10-10 | антилямбда | Λ | |
сигма-плюс | Σ+ | 1 | 1 | 2328 | 0,8*10-10 | антисигма-минус | Σ- | |
сигма-нуль | Σ0 | 1 | 0 | 2334 | 10-14 | антисигма-нуль | Σ0 | |
сигма-минус | Σ- | 1 | -1 | 2343 | 1,6*10-10 | антисигма-плюс | Σ+ | |
кси-нуль | Ξ0 | 1 | 0 | 2573 | 3*10-10 | антикси-нуль | Ξ0 | |
кси-минус | Ξ- | 1 | -1 | 2586 | 1,7*10-10 | кси-плюс | Ξ+ | |
омега-минус | Ω- | 1 | -1 | 3277 | 1,5*10-10 | омега-плюс | Ω+ |
Радиоактивность
Радиоактивностью называют самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер. К числу основных таких превращений относятся: 1) альфа-распад, 2). бета-распад (в том числе К-захват), 3) протонная радиоактивность и 4) спонтанное деление тяжелых ядер.
Радиоактивность, наблюдающаяся у изотопов, существующих в природных условиях, -называется естественной. Радиоактивность изотопов, полученных посредством ядерных реакций, называется искусственной. Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам.
Естественная радиоактивность была открыта в 1896 г. Беккерелем. Было обнаружено, что радиоактивное вещество является источником трёх видов излучения. Одно из них под действием магнитного поля отклоняется в ту же сторону, в которую отклонялся бы поток положительно заряженных частиц; оно получило название α-лучей. Второе, названное β-лучами, отклоняется магнитным полем в противоположную сторону, т. е. так, как отклонялся бы поток отрицательно заряженных частиц. Третье излучение, никак не реагирующее на действие магнитного поля, было названо γ-лучами. Впоследствии выяснилось, что γ-лучи представляют собой электромагнитное излучение весьма малой длины волны.
Искусственно-радиоактивные вещества могут получаться при весьма разнообразных ядерных реакциях. Примером может служить реакция захвата нейтронов серебром. Для проведения такой реакции достаточно поместить пластинку серебра поблизости от источника нейтронов, окружённого парафином. В парафине нейтроны замедляются, а медленные нейтроны легко захватываются ядрами и вызывают ядерную реакцию. Пластинка серебра при этом не претерпевает под действием нейтронов каких-либо видимых изменений. Но если поднести её к газоразрядному счётчику, то он покажет, что пластинка стала радиоактивной, т. е. испускает β-лучи. При этом обнаруживается, что приобретённая радиоактивность постепенно ослабевает.
Искусственная радиоактивность – весьма распространённое явление: в настоящее время получено по нескольку искусственно-радиоактивных изотопов для каждого из элементов периодической системы.
Простейшие ядерные реакции
Ядерной реакцией называется процесс интенсивного взаимодействия атомного ядра с элементарной частицей или с другим ядром, приводящий к преобразованию ядра. Взаимодействие возникает при сближении частиц благодаря действию ядерных сил.
Наиболее распространённым видом ядерной реакции является взаимодействие лёгкой частицы a с ядром Х, в результате которого образуется лёгкая частица b и ядро Y:
Х + а = Y + b
В качестве частиц а и b могут фигурировать нейтрон, протон, ядро тяжёлого водорода (дейтон), α-частица и фотон. Ядерные реакции могут сопровождаться как выделением, так и поглощением энергии. Количество выделяющейся энергии называется тепловым эффектом реакции. Он определяется разностью масс покоя (выраженных в энергетических единицах) исходных и конечных ядер. Если сумма масс образующихся ядер превосходит сумму масс исходных ядер, реакция идет с поглощением энергии и тепловой эффект ее будет отрицательным.
Как установил Н. Бор в 1936 г., реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. Первый этап заключается в захвате приблизившейся к ядру X на достаточно малое расстояние (такое, чтобы могли вступить в действие ядерные силы) посторонней частицы а и в образовании промежуточного ядра П, называемого составным ядром или компаунд-ядром. Энергия, привнесенная частицей а (она слагается из кинетической энергии частицы и энергии ее связи с ядром), за очень короткое время перераспределяется между всеми нуклонами составного ядра, в результате чего это ядро оказывается в возбужденном состоянии.
На втором этапе составное ядро испускает частицу b. Символически такое двустадийное протекание реакции можно представить следующим образом:
Х + а = П = Y + b
Может случиться, что испущенная частица тождественна с захваченной (b =а). Тогда процесс называют рассеянием, причем в случае, если энергия частицы bравна энергии частицы а (Еь = Еа),рассеяние будет упругим, в противном случае — неупругим. Ядерная реакция имеет место, если частица b не тождественна с а.