Смекни!
smekni.com

Элементарные частицы в виде корпускул и волн и модель атома (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электронной техники и технологии

РЕФЕРАТ

На тему:

«ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ В ВИДЕ КОРПУСКУЛ И ВОЛН И МОДЕЛЬ АТОМА»

МИНСК, 2008

Введение

Принцип действия электронных, ионных и полупроводниковых приборов базируется на движении свободных частиц, которые благодаря своему заряду подвержены воздействию со стороны электрических и магнитных полей. Различают четыре группы частиц, используемых в этих приборах, а именно: электроны, ионы, нейтральные атомы, или молекулы, и кванты электромагнитного излучения (фотоны, кванты рентгеновского и γ-излучения); свойства этих частиц и их поведение определяют принцип действия прибора.

1. Основные сведения об элементарных частицах

1.1. Электрон.

Заряд е=1,6*10-19 к (в уравнения подставляется положительная величина).

Масса m=9,1*10-28 г.

e/m=1,76*108 к/г, или (в технической системе единиц) e/m≈1,8*1015 см2/в*сек2.

m/mH=1/1835 (mH - масса атома водорода).

Радиус r ≈ 10-13 см.

Энергия Ek= 1/2 mv2 = eU.

Скорость

, км/сек. (1)

1.2. Ионы

В качестве примера приведены данные для иона Н+, иона Не+ и иона Hg+.

Скорость иона можно определить из уравнения (1), если вместо m подставить массу иона mi, а вместо элементарного заряда е заряд иона qi (положительный).

Ион Заряд* qi,к Радиус ri, см Масса mi,г qi/mi, к/г
Н+Не+Hg+ 1,6*10-191,6*10-191,6*10-19 1,09*10-81,10*10-81,80*10-8 1,68*10-246,67*10-243,31*10-24 9,53*1042,4*1040,048*104

* Для однозарядных ионов; у многозарядных ионов заряд в кратное число раз больше.

1.3. Кванты излучения

(Оптическое, рентгеновское и радиоактивное излучение)

«Масса» mф = Еф2 = h/сλ, Вт*сек3/см2 *.

Энергия Eф = hv = hc/λ = eUф; отсюда следует:

, в; λ[Å]. (2)

Постоянная Планка h = 6,625*10-34 вт*сек2; v - частота, Гц; с - скорость света, см/сек; λ - длина волны, см, или Å; vλ = c, Uф - вольт-эквивалент энергии фотона, в.

Энергия квантов оптического излучения в инфракрасной области равна примерно 10-3 – 1,5 эв **, в видимой области 1,5 - 3,3 эв; в ультрафиолетовой области 3,3 - 102 эв.

Энергия квантов рентгеновского излучения равна 0,1 - 1 000 кэв.

Энергия β - и γ-излучения радиоактивных материалов от 0,01 до 10 Мэв [Со60 (γ): 1,33 Мэв, Sr90 (β): от 0,6 до 2,2 Мэв, Т3 (тритий) (β) : 0,018 Мэв].

Энергия космических лучей от 103 до 1012 Мэв.

2. Представление элементарных частиц в виде корпускул и волн

Основные сведения об элементарных частицах, приведенные в разделе А, могут быть получены с помощью достаточно простых экспериментальных устройств.

2.1. Некоторые экспериментальные методы определения заряда, массы и длины волны электрона

Определение заряда электрона е. Заряд электрона (элементарный заряд) е может быть определен посредством следующего опыта (опыт Милликена). В микроскоп наблюдают за движением помещенной между обкладками конденсатора частицы, заряженной одним или несколькими элементарными зарядами. Как видно из рис. 1, отрицательно заряженная в дуговом разряде капля масла помещается в воздухе между обкладками горизонтально расположенного конденсатора, к которым приложено напряжение. На каплю действуют сила тяжести Мg (М - масса масляной капли, g - ускорение силы тяжести) и в противоположном направлении сила со стороны приложенного поля еЕ и сила сопротивления воздуха 6πηiav, где ηi - коэффициент вязкости воздуха, a - измеренный радиус частиц.

Отсюда для случая равновесия (когда частица неподвижна, v = 0) справедливо соотношение

;
; (3)

е [а*сек], М [вт*сек3/см2], g [см/сек2], d [см], U [в], Е [в/см].

В этом равенстве g, d и U известны.

Рис. 1. Конденсатор Милликена для определения элементарного заряда.

1 - нейтральная капля масла (заряжается в дуге); 2 - падающая положительно заряженная капля масла (заряжается положительно в дуговом разряде или в результате фотоэффекта); 3 - отрицательно заряженная капля масла (отрицательный ион или электрон); 4 - положительно заряженная капля масла (положительный ион); 5 - дуга; 6 - обкладка конденсатора; 7 - источник света.

Масса М частицы может быть найдена, если знать скорость падения частицы v в незаряженном конденсаторе:

M = 6πηiav/g;

Таким образом, из (3) может быть найдена величина элементарного заряда е .

Если каплю масла, находящуюся в равновесии, подвергнуть облучению ультрафиолетовым светом, то вследствие внешнего фотоэффекта она может отдать свой заряд. При этом внезапный подъем или внезапное падение такой частицы в конденсаторе является доказательством квантовой природы заряда, освобожденного светом, и тем самым атомистической природы электричества.

Определение массы электрона m по давлению электронного луча. Величину массы электрона можно определить путем измерения силы, с которой действует электронный луч на электрод в вакууме. Этой силе противодействует измеряемая на опыте сила закручивания нити, на которой подвешен бомбардируемый электронами электрод (рис. 2). При равновесии нити обе силы уравновешиваются. Сила F, с которой действует поток электронов на электрод, равна изменению полного импульса всех электронов, ударяющихся в единицу времени об электрод. Если mv - импульс одного электрона и он полностью передается электроду, то

,

откуда

(4)

где I – электронный ток на электрод, U - анодное напряжение и I/е - число электронов, достигающих электрода в единицу времени.

Рис. 2. Схема установки для определения массы электрона по давлению электронного луча.

1 - катод; 2 - анод; 3 - бомбардируемый электрод; 4 - электронный луч.

Если в уравнение (4) подставить численные значения для e и m, то получим:

[Г]*, I[a], U[в] (4a)

Примеры и применения. Определение силы, с которой действует электронный луч на анод в рентгеновской трубке, применяемой в медицине (с электрическими параметрами I = 1 а, U = 250 кв); согласно равенству (2.4а) сила F = 0,175 Г.

Определение силы воздействия протонов в космотроне (масса mH; m/mH = 1835) при I = 1 а и U = 3*109 в сила F = 800 Г (в течение 10-7 сек).

Определение силы тяги космического корабля (с плазменным ионным двигателем на ионах цезия (mCs/m= 5*102); при токе I= 103а и напряжении U = 104в сила тяги Fs≈ 17 кГ. Если F известно, то, подставляя остальные данные в уравнение (4), можно определить неизвестную массу атома.

Методы определения удельного заряда электрона е/m.

а) Метод торможения вращающейся проволочной катушки. Согласно Толману и Стюарту в движущемся твердом теле (например, в катушке из проволоки, вращающейся вокруг оси с большой скоростью, рис. 3) при его внезапном затормаживании вследствие инерции электронов возникает импульс тока.

Изменение механического импульса электронов проводимости Mev, возникающее при торможении тела до полной остановки в течение времени t2 – t1 приводит к появлению импульса тока

. Так как

, то

или

, (4б)

где R, ом - сопротивление проволочной катушки; l, см - ее длина; v, см/сек = 2πrn - линейная скорость вращения катушки; n, 1/сек - число оборотов катушки в секунду; e, а*сек - заряд электрона; Мe, вт*сек3/см2 - полная масса всех движущихся электронов; I, а - мгновенный ток; Fe, вт*сек/см - сила инерции всех электронов в катушке.

Измеряя баллистическим методом величину

, можно рассчитать значение е/Мe и, зная полное число квазисвободных электронов в катушке, найти величину отношения e/m.

Рис.3. Схема метода определения отношения заряда электрона к его массе (е/m) при резком торможении вращающейся проволочной катушки.

1 - гальванометр; 2 - вращающаяся катушка.

б) Метод электроннолучевой трубки, помещенной в поле земного магнетизма. На электронный луч с силой тока I действует со стороны магнитного поля с индукцией Вотклоняющая (центростремительная) сила, равная Fц= [IxB].