Смекни!
smekni.com

Элементы спектрального анализа (стр. 4 из 14)

Ягер и Лугрова[42] после исследования синтетических смесей, также показали, что количество 3,4 бензпирена, найденное после анализов, было всегда меньше, чем количество прибавленное ( -7 -10 % ). Авторы объясняют этот эффект ,как причину интерференции других компонентов, присутствующих в смеси. Также было найдено, что высоконцентрационная граница для анализа 3,4 бензпирена в конечном растворе была

, будучи оптимальной при типичном значении
.

Данильцева и Хесина [43] установили метод для анализа, 7,12-демитилбензоантрацена в н-октане при 77 К. Предложенный метод был комбинацией двух методов стандартной примеси и внутреннего стандарта (комбинированный метод): 3,4,5,6,7-трибензопирен (ТВР) был выбран внутренним стандартом, так как это соединение имеет отчётливый квазилинейный флуоресцентный спектр в н-октане и, следовательно, не искажает аналитику квазилинейного испускания.

Дикун и др [34] сравнили комбинированный метод, описанный выше с методом внутреннего стандарта и методом примесей для анализа 3,4 бензпирена в н-октане при 77 К. 1,12 бензперилен, был использован как стандарт для методов внутреннего и комбинированного. Это сравнение показало, что большая разница в результатах была получена, когда был исполь­зован метод примесей (+ 29 %),и похожие результаты ( 8 - 10 %) были получены, когда был использован или метод внутреннего стандарта, или комбинированный метод.

Дикун со своимисотрудниками, однако, поднимают вопрос о том, что когда анализируются реальные образцы, существует возможность, что они включают другие вещества, которые могут тушить флуоресценцию излучаемых соединения. Согласно Персонову и Теплицкой[41] такие соединения хотя они не представляют реальной проблемы ни в ком­бинированном методе ни в методе примесей - могут мешать в методе внутреннего стандарта. Количественные анализы для 3,4 бензпирена, сделанные Дикуном и его сотрудниками, в различных образцах, используя внутренний стандарт или комбинированный метод, показывают, что ре­зультаты представляют расхождения, но не было возможности прийти к определённому выводу, что примеси, которые присутствуют в образцах были ответственны за различия[34]. Эти сотрудники сделали вывод, что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой.

Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их достоверность и точность, а это не всегда возможно в силу многих причин.

§2. Факторы, влияющие на точность спектрального анализа.

Резкие квазилинейчатые спектры люминесценции (и поглоще­ния) обладают рядом особенностей, которые позволяют эффектив­но использовать их в аналитических целях. Эти особенности квазилинейчатых спектров лю­минесценции сделали их наиболее тонким и точным современным аналитическим методом и указывают на целесообразность и перспективность применения его для спектрохимического анализа многокомпонентных природных смесей[6,7].

1. Специфичность

Тонкость, многочисленность и индивидуальное расположение полос в спектре люминесценции каждого углеводорода позволяют осуществить достоверную идентификацию.

2. Селективность

Позволяет обнаруживать индивидуальные соединения в слож­ных смесях, когда доля вещества так мала, что спектр флуорес­ценции при обыкновенной температуре дает лишь слабый намек или вообще не дает указаний на его присутствие.

3. Чувствительность

Чувствительность обнаружения индивидуального углеводоро­да в «чистых» растворах н-парафинов достигает

[7]. Т. е. превосходит на 2—3 порядка чувствительность обыч­ного люминесцентно-спектрального анализа при комнатной тем­пературе и намного превосходит чувствительность методов коле­бательных спектров.

С помощью квазилинейчатых спектров возможно определение отдельных индивидуальных органических соединений (одновременно 4—5 веществ) в многокомпонентных смесях даже тогда, когда они входят в смесь в виде следов и анализ другими методами не­возможен.

Анализ имеющихся экспериментальных данных показывает, что харак­тер квазилинейчатого спектра зависит от условий образования смешан­ного кристалла (растворитель — вещество). Оптические свойства обра­зовавшегося поликристаллического раствора определяются свойствами растворителя, условиями кристаллизации раствора, наличием люминесцирующей примеси, характером взаимодействия между ними и содер­жанием в растворе других компонент.

Растворители. Для получения дискретных спектров флуоресценции и поглощения ароматических углеводородов удобными растворителями оказались нормальные парафины, хотя в ряде исследований была пока­зана пригодность для этих целей других жидкостей, кристаллизующихся при замораживании: Для каждого соединения удается подобрать один или группу н-парафинов, в которых условия для возникновения квази­линейчатых спектров наиболее благоприятны. В частности, для соедине­ний с линейной структурой (полиацены, полифенилы, дифенилполиены и т.д.) наиболее резкие спектры наблюдаются в тех случаях, когда ли­нейные размеры молекул растворителя близки к линейным размерам молекул примеси. Меняя растворитель, удается выделить квазилиней­чатые спектры различных компонент смеси.

Концентрации. Выбор оптимальных концентраций исследуемого вещества в «чистом» растворителе диктуется следующими соображени­ями. Как отмечалось ранее в ряде работ [6,7], квазилинейчатый характер имеют спектры молекул, находящихся в замороженном раст­воре в состоянии так называемого «ориентированного газа», т. е. для этого необходимы небольшие концентрации примесных молекул. Уве­личение концентрации приводит к возникновению взаимодействия меж­ду молекулами примеси, к миграции энергии между раз­личными компонентами сложной смеси и, возможно, к образованию аг­регатов примесных молекул. Это в свою очередь способствует «размы­ванию» спектра и появлению полос в более длинноволновой области.

Существуют данные о влиянии примеси и на характер кристалличе­ской структуры матрицы, возникающей при замораживании. Под влия­нием высоких концентраций растворенного вещества в некоторых уча­стках происходит перестройка матрицы — растворителя, что приводит к изменению характера квазилинейчатого спектра растворенных молекул.

Скорость охлаждения. В ряде работ [7, 32] показано, что характер и структура квазилинейчатых спектров сильно зависят от скорости ох­лаждения раствора. Обычно кюветы или пробирки с исследуемым раствором быстро погружаются в жидкий азот. В таком случае говорят о быстром замораживании. Однако скорость замораживания раствора существенно зависит от объема и формы кюветы. Можно предположить, что наружные слои раствора замерзают довольно быстро, а внутренние могут промерзать значительное время. В результате условия образова­ния кристаллического раствора в разных частях кюветы неодинаковы, что сказывается на характере спектра излучения и еще сильнее на спектре поглощения. В тонких слоях (100 мкм и меньше) кристаллизация проходит быстрее, и это может приводить к существенным спект­ральным изменениям[37].

Влияние кислорода. Известно, что все растворители при комнат­ной температуре и атмосферном давлении содержат то или иное количе­ство растворенного в них кислорода. Так, например, в н-гексане при этих условиях растворено

кислорода. Известно так­же, что люминесценция полициклических ароматических углеводородов в растворе н-парафинов при комнатной температуре подвержена силь­ному кислородному тушению. Например, люминесценция 3,4-бензпирена и 1,12-бензперилена в н-гексане при комнатной температуре тушится кислородом в 10 раз. Однако при понижении температуры раствора до 77°К растворенный в н-гексане кислород перестает оказывать влияние на интенсивность квазилиний флуоресценции этих соединений. Но при замораживании раствора в открытой кювете происходит силь­ная конденсация газообразного кислорода из окружающего воздуха, что приводит к частичному падению интенсивности люминесценции в результате воздействия конденсированного кислорода на люминесцирующие молекулы .

Условия возбуждения. Для возбуждения люминесценции образца необходимо, чтобы длина волны возбуждающего света попадала в об­ласть поглощения исследуемой молекулы. Выбор оптимальных условий возбуждения для данной смеси можно производить также с помощью спектров возбуждения. Возбуждение свечения исследуемого раствора длинами волн, соответствующими наиболее интенсивным полосам спектра возбуждения, будет давать наиболее интенсивные и частично дифференцированные спектры люми­несценции сложной смеси.

Мультиплетность. Квазилинейчатые спектры обладают своеобраз­ной особенностью: в целом ряде случаев каждому электронно-колеба­тельному переходу в спектре соответствует группа линий, повторяющих­ся часто по всему спектру и получивших название мультиплетов. Одной из причин возникновения мультиплетов является наличие нескольких типов излучающих центров,- находящихся в различных локальных усло­виях, что приводит к смещению электронных уровней, в то время как расположение колебательных подуровней при этом остается неизмен­ным . Объяснение происхождения мультиплетной структуры спектров не исчерпывается гипотезой разных центров. Некоторые из компонент мультиплета могут быть связаны с наличием близко рас­положенных уровней у одного и того же излучающего центра [7].