Альтернативный процесс, т. е. заселение электронно-возбужденного синглетного состояния
(16.1)был постулирован Лимом и сотр. [52], которые облучали при 77 К растворы акрифлавина и родственных красителей в эфир-пентан-этанольном стекле и обнаружили замедленную флуоресценцию, продолжавшуюся несколько секунд. Кроме того, они зарегистрировали по поглощению промежуточное вещество, идентифицированное как положительный ион-радикал — продукт фотоионизации. За исключением ранней стадии, замедленная флуоресценция затухала экспоненциально со скоростью, равной скорости исчезновения ион-радикалов. Интегральная интенсивность замедленной флуоресценции и начальная концентрация ион-радикалов оказались пропорциональными интенсивности возбуждающего света, и авторы сделали вывод об однофотонном механизме возбуждения. Эффективность замедленной флуоресценции увеличивалась при уменьшении длины волны возбуждающего света. Эти результаты были интерпретированы в рамках модели, подобной предложенной Альбрехтом и сотр. для люминесценции тетраметил-n-фенилендиамина, хотя позднее Альбрехт и Кадоган [64] заново рассмотрели свои результаты уже исходя из двухфотонного механизма.
Вляние длины волны возбуждающего света на замедленную флуоресценцию обнаружили также Стивенс и Уокер [52], исследовавшие при 77 К перилен в жидком парафине. В их опытах спектр возбуждения замедленной флуоресценции приблизительно совпадал со спектром триплет-триплетного поглощения перилена, и они приняли двухфотонный механизм, включающий фотоионизацию триплетного состояния и рекомбинации, в результате которой заселяются и триплетное и возбужденное синглетное состояния:
(17.1) (18.1) (19.1)Впоследствии были высказаны сомнения в правильности этой интерпретации из-за возможного влияния фосфоресценции кювет или примесей в растворе .
Портер и сотр. [52] исследовали двухфотонные фотохимические процессы, индуцированные поглощением света триплетными состояниями в твердых средах при температуре 77 К. Для растворов ароматических соединений в алифатических углеводородах, они установили два типа процессов: а) ионизация растворенного вещества; б) сенсибилизированная диссоциация растворителя на атомы водорода и свободные радикалы и отрыв последними атомов водорода от растворителя или растворенного вещества, в результате чего получаются радикалы растворенного вещества. Под действием инфракрасного света или при слабом нагревании наблюдались флуоресценция и фосфоресценция, возникавшие в результате рекомбинации ионов и электронов. Отношение интенсивностей фосфоресценции и флуоресценции было выше, чем при обычном оптическом возбуждении, и в этом отношении результаты были идентичны результатам Альбрехта и сотр. [64], впоследствии пересмотренным с точки зрения двухфотонного механизма.
Опыты Смоллера [65] с растворами индола в метаноле при 77 К не позволили сделать выбор между тремя предложенными Смоллером механизмами образования радикалов спирта:
1.Двухквантовая реакция с промежуточным образованием триплетного
состояния индола,
2. Одноквантовая реакция молекулы индола в низшем триплетном со
стоянии с молекулой спирта.
3. Одноквантовая реакция возбужденной молекулы индола в синглетном
состоянии с молекулой спирта.
Таким образом, в этой работе не было установлено даже участие низшего триплетного состояния сенсибилизатора в реакции образования радикалов спирта. Это сделано в работе Холмогорова и др. [22] для растворов ароматических аминов в спиртах. Однако авторы этой работы не предполагали двухквантового механизма образования радикалов спирта. Такой механизм образования радикалов в аналогичных системах доказан в работах Багдасарьяна и др. [5, 6] применением точных кинетических методов: исследованием зависимости скорости образования радикалов от интенсивности света и частоты прерывистого освещения. Последний метод позволил установить, что образование радикалов — непосредственный результат поглощения кванта света промежуточным состоянием со временем жизни, совпадающим со временем жизни низшего триплетного состояния. Двухквантовый механизм этих реакций подтвержден в работе Холмогорова и др. [66]. Вскоре было найдено, что многие ароматические соединения, включая бензол, в растворах алканов, спиртов и эфиров при 77 К вызывают двухквантовую реакцию образования радикалов из растворителя [67,68]. Козлов и Шигорин [69] обнаружили двухквантовую реакцию образования радикала трифенилметила при освещении замороженных растворов трчфенилметана в различных матрицах (этанол и др.).
В 1965 г. было показано, что фотоионизация ароматических аминов при 77 К также представляет двухквантовую реакцию [52]. Несколько раньше это было обнаружено при фотоионизации ароматических углеводородов в стеклообразных растворах борной кислоты при комнатной температуре [66]. В дальнейшем оказалось, что образование радикалов спирта в растворах ароматических аминов, по крайней мере частично, а в некоторых случаях— полностью, представляет вторичную реакцию . Первая стадия—двухквантовая фотоионизация:
,вторая стадия — одноквантовая реакция фотовозбужденного электрона со спиртом:
.Для растворов диметил- и тетраметил-n-фенилендиаминов все радикалы спирта образуются по этому механизму. После начального нестационарного периода скорость образования радикалов определяется скоростью двухквантовой фотоионизации.
Многие ароматические молекулы в триплетном состоянии в жесткой среде имеют время жизни больше одной секунды. В этих условиях даже при умеренных интенсивностях света концентрация молекул в триплетном состоянии становится столь значительной, что можно обнаружить поглощение света молекулами в триплетном состоянии. Это явление, получившее название триплет-триплетного поглощения, впервые было обнаружено в 1941 г. Льюисом и сотр.[54] Ароматическое соединение в стеклообразующем растворителе при температуре жидкого воздуха освещалось УФ-светом в перпендикулярном направлении — источником сплошного света. Поглощения этого«зондирующего» луча регистрировалось фотографическим методом. Открытие метода импульсного фотовозбуждения позволило Портеру и Виндзору [55] обнаружить спектры Т—Т-поглощения в жидкой среде. В настоящее время часто применяют фотоэлектрическую регистрацию спектра Т—Т-поглощения «по точкам». В качестве источника возбуждения получили также применение лазеры, дающие УФ-излучение. Получение спектров Т—Т-поглощения в видимой области в настоящее время не представляет больших трудностей. Гораздо труднее получить спектр Т— Т-поглощения в УФ-области, где он обычно перекрывается со спектром поглощения
. Определение коэффициентов экстинкции Т—Т-поглощения, особенно в УФ-области, также встречает трудности, так как т требует определения концентрации молекул в триплетном состоянии. Ниже рассмотрены основные методы определения концентрации молекул в триплетном состоянии и коэффициентов экстинкции Т—Т-поглощения [53].В жидких системах посредством мощного импульса света все молекулы переводятся из состояния в состояние . Измерение оптической плотности при помощи зондирующего луча сразу после окончания импульса позволяет приравнять концентрацию триплетных молекул к исходной концентрации [70]. Если при увеличении интенсивности света оптическая плотность для всех длин волн не изменяется, то это служит доказательством справедливости сделанного допущения. Этим методом были получены спектры Т—Т-поглощения