также значительно больше констант рекомбинации других частиц.
§4. Зависимости интенсивности фосфоресценции при одноквантовых и двухквантовых процессах.
В работах Дерябина М. И. и Ериной М. В.[76] Подробным образом рассмотрена кинетика фосфоресценции органических молекул. Из рассмотрения изменения числа частиц в состояниях
, , при облучении системы стационарным потоком: (27.1)При рассмотрении трёхуровневой системы, точнее изменения числа частиц при облучении системы излучением с постоянной интенсивностью. При этом пренебрегались вынужденные переходы. Рассматривая описанную выше систему, составлялись уравнения баланса для разгорания и затухания фосфоресценции соответственно:
(28.1) и (29.1)Решая данные системы(28.1) и (29.1) методами Эйлера и Бернулли[77], а также пренебрегая вынужденными переходами, был получен закон образования и распада возбуждённых частиц на триплетном уровне:
со временем разгорания и затухания соответственно:
А при сильном возбуждении
< .Интенсивность фосфоресценции определяется следующим соотношением:
Для двухквантовой реакции, когда лишь малая доля падающего монохроматического излучения поглощается образцом, кинетическое уравнение выглядит следующим образом[53]:
(30.1)где
- интенсивность падающего света ; - коэффициент экстинкции поглощения ; - коэффициент экстинкции поглощения ; -исходная концентрация ароматического соединения; - концентрация этого-же соединения в триплетном состоянии ; - выход триплетных состояний; - время жизни в триплетном состоянии; -вероятность всех путей дезактивации высшего триплетного состояния кроме . После интегрирования получается: , (31.1)где
,Очевидно, стационарная концентрация молекул определяется из (31.1):
, -константа скорости излучательной дезактивации состояния .Для стационарной скорости двухквантовой реакции получено следующее выражение[53]:
, (31.2)где
.При больших интенсивностях света, года веществом поглощается лишь малая часть происходит отклонение зависимости скорости реакции, а следовательно и скорости образования фотопродукта от закона
В экспериментальных исследованиях триплетных молекул важное место, наряду со спектральными, занимают кинетические методы [78-80], то есть изучение процессов заселения и распада возбужденных состояний. Определенные из кинетических экспериментов параметры являются характеристиками, как самих молекул, так и их взаимодействия между собой и с матрицей, в случае примесных центров. Особенно важным является то, что параметры кинетики (время накопления и время дезактивации возбужденных состояний), определяются константами скоростей соответствующих переходов и, следовательно, позволяют извлечь информацию, о путях дезактивации триплетно возбужденных молекул. Этим обусловлена необходимость использования кинетических методов для установления и изучения механизмов дезактивации триплетных состояний органических молекул в твердых матрицах при их сенсибилизированном возбуждении.
Одним из направлений исследования межмолекулярных взаимодействий в конденсированных средах является изучение влияния температуры на люминесцентные характеристики центров излучения. Сведения, получаемые при этом, необходимы также для определения констант скоростей процессов, регулирующих накопление молекул в возбужденных состояниях и их деградацию.
С учетом всего вышесказанного была разработана и собрана спектрофлуориметрическая установка, блок схема которой приведена на рис. 2.1. Данная установка позволяла получать и исследовать спектры поглощения и люминесценции, кривые разгорания и затухания фосфоресценции, а также зависимости люминесцентных характеристик изучаемых объектов от температуры[76].
Экспериментальная установка была собрана на базе монохроматора СДМС с дифракционной решеткой 1200 шт/мм, работающей в первом порядке. Обратная линейная дисперсия равнялась 1,2 нм/мм. Данная решетка позволяла исследовать спектр в диапазоне длин волн от 250 до 700 нм. С помощью монохроматора можно было выделять для исследования вибронные полосы в спектре фосфоресценции молекул, узкие спектральные участки в полосах, а также исследовать суммарную интенсивность свечения без разложения в спектр при работе решетки в нулевом порядке. В некоторых опытах, при работе решетки в нулевом порядке, использовалась комбинация различных фильтров для выделения широкого участка спектра в нужной его области. Блок поворота решетки 2 включал в себя синхронный двигатель СД-54 с редуктором, позволяющим изменять скорость ее вращения в широких пределах. Градуировка монохроматора проверялась по линиям излучения ртутной лампы низкого давления. Исследуемый образец 3 помещался в сосуд Дьюара 4 с жидким азотом, который был расположен в темновой камере 5.
Доноры возбуждались излучением ртутной лампы 6 типа ДРТ – 230 с фильтрами выделяющими линию 365 нм или азотным лазером 7 типа ЛГИ – 21 (
нм) с частотой следования импульсов 100 Гц. Плотность мощности в импульсе для нерасфокусированного луча лазера составляла примерно 10 4 Вт/см 2.1. Монохроматор СДМС
2. Блок поворота решетки
3. Исследуемый образец
4. Сосуд Дьюара
5. Темновая камера
6. Лампа ДРТ – 230 (или ДКсШ – 150)
7. Азотный лазер типа ЛГИ-21
8. Дейтериевая лампа ДДС-3
9. Электромеханические затворы
10. Электромеханические затворы
11. Реле времени
12. Переносной пульт управления
13. Калибратор импульсных напряжений типа В 1-5
14. Фотоэлектронный умножитель типа ФЭУ-38
15. Двухкоординатный самописец типа Н-307
16. Источник питания фотоэлектронного умножителя
17. Катодный повторитель
Для отделения сенсибилизированной фосфоресценции акцептора от фосфоресценции донора и изучения закона затухания фосфоресценции на различных ее стадиях использовались электромеханические затворы 9 и 10, управляемые с помощью электронных реле времени 11, с применением переносного пульта управления 12. Время срабатывания затворов (перекрывания светового потока) не превышало 5 мс. Электронные реле времени позволяли изменять дискретно задержку времени между началом регистрации и прекращением возбуждения от 0,1 до 30 с. Это давало возможность отделять во времени фосфоресценцию акцептора от фосфоресценции донора в области перекрывания их спектров, даже если интенсивность фосфоресценции донора значительно превышала интенсивность фосфоресценции акцептора. Это также позволяло исследовать кинетику затухания фосфоресценции на различных ее стадиях. Система управления затворами давала возможность формировать световые импульсы возбуждения различной длительности, что было необходимо для изучения зависимости кинетики затухания от продолжительности возбуждения.