Смекни!
smekni.com

Энергия Гиббса (стр. 1 из 2)

ПЛАН

ВВЕДЕНИЕ ................................................................................................ 2

ЭНЕРГИЯ ГИББСА .................................................................................... 3

ЗАКЛЮЧЕНИЕ ........................................................................................ 14

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ................................... 15


ВВЕДЕНИЕ

В своем реферате я расскажу об энергии Гиббса.

Гиббс Джозайя Уиллард (1839-1903), американский физик-теоретик, один из создателей термодинамики и статистической механики. Разработал теорию термодинамических потенциалов, открыл общее условие равновесия гетерогенных систем — правило фаз, вывел уравнения Гиббса — Гельмгольца, Гиббса — Дюгема, адсорбционное уравнение Гиббса. Установил фундаментальный закон статистической физики — распределение Гиббса. Предложил графическое изображение состояния трехкомпонентной системы (треугольник Гиббса). Заложил основы термодинамики поверхностных явлений и электрохимических процессов. Ввел понятие адсорбции.

ЭНЕРГИЯ ГИББСА

В начале своей работы я думаю необходимо представить основные понятия теории Гиббса.

ПРАВИЛО ФАЗ ГИББСА в термодинамике: число равновесно сосуществующих в какой-либо системе фаз не может быть больше числа образующих эти фазы компонентов плюс, как правило, 2. Установлено Дж. У. Гиббсом в 1873-76.

ГИББСА ЭНЕРГИЯ (изобарно-изотермический потенциал, свободная энтальпия), один из потенциалов термодинамических системы. Обозначается G, определяется разностью между энтальпией H и произведением энтропии S на термодинамическую температуру Т: G = HT·S. Изотермический равновесный процесс без затраты внешних сил может протекать самопроизвольно только в направлении убывания энергии Гиббса до достижения ее минимума, которому отвечает термодинамическое равновесное состояние системы. Названа по имени Дж. У. Гиббса.

ПОТЕНЦИАЛЫ ТЕРМОДИНАМИЧЕСКИЕ, функции объема, давления, температуры, энтропии, числа частиц и других независимых макроскопических параметров, характеризующих состояние термодинамической системы. К потенциалам термодинамическим относятся внутренняя энергия, энтальпия, изохорно-изотермический потенциал (Гельмгольца энергия), изобарно-изотермический потенциал (Гиббса энергия). Зная какие-либо потенциалы термодинамические как функцию полного набора параметров, можно вычислить любые макроскопические характеристики системы и рассчитать происходящие в ней процессы.

РАСПРЕДЕЛЕНИЕ ГИББСА каноническое, распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со средой, то распределение Гиббса называется большим каноническим. Для изолированной системы справедливо Гиббса распределение микроканоническое, согласно которому все микросостояния системы с данной энергией равновероятны. Названо по имени открывшего это распределение Дж. У. Гиббса.

Реакции присоединения радикалов к непредельным соединениям лежат в основе современной технологии получения полимеров, сополимеров и олигомеров. Эти реакции протекают при крекинге углеводородов, галоидировании олефинов, окислении непредельных соединений. Они широко используются в синтезе разнообразных соединений и лекарственных препаратов. Реакции присоединения атомов водорода и гидроксильных соединений к непредельным и ароматическим соединениям сопровождают фотолиз и радиолиз органических материалов и биологических объектов.

В реакции радикального присоединениятипа
X·+ CH2=CHY
® XCH2C·HY

рвется двойная С=С-связь и образуется связь С- X. Как правило, образующаяся
s -связь прочнее рвущейся p -С- С-связи, и поэтому реакция присоединения экзотермична. Это четко видно из сравнения энтальпии реакции DН и прочности образующейся связи D (Et-X) в табл. 1.

Другой важный фактор, влияющий на энтальпию реакции, -энергия стабилизации образующегося радикала XCH2C·H2Y: чем больше эта энергия, тем больше теплота присоединения радикала X· к олефину. Энергию стабилизации можно охарактеризовать, например, разницей прочности связей C- H в соединениях Pr- H и EtYHC- H. Ниже приведены данные, характеризующие вклад энергии стабилизации радикала CH3CH2C· H2Y, образующегося в результате присоединения метильного радикала к мономеру CH2=CHY, в энтальпию этой реакции.

Таблица 1.

Энтальпия, энтропия и энергия Гиббса присоединения атомов и радикалов X·к этилену.

X·

-DH,

кДж моль-1

-DS,

Дж моль-1 К-1

-DG (298 K),

кДж моль-1

H· 150 84 125
Cl· 82 88 56
C· H3 100 122 64
Me2C· H 92 134 52
PhC· H2 63 122 27
N· H2 81 109 49
HO· 122 100 93
CH3O· 82 118 46
HO2· 63 134 23
Y H C(O)OMe Cl CN Ph
DPr- H-
DEtYHC·- H,
кДж моль-1
0.0 23.2 24.1 33.6 57.9
-DН,кДж моль-1 95.8 102.0 104.3 129.7 143.0

Видно, что чем больше энергия стабилизации радикала, тем меньше энтальпия реакции.

Все реакции присоединения протекают с уменьшением энтропии, т. к. происходит соединение двух частиц в одну (см. табл. 8.1). В силу этого для реакций присоединения энергия Гиббса, и при достаточной высокой температуре экзотермическая реакция присоединения является обратимой, т. к. DG = DH-TD S.

На любой процесс (реакцию) действуют два фактора:

Энатльпийный (экзо- или ендо) – Δ H;

Энтропильный (ТΔS).

При объединении этих двух факторов получаем:

ΔН – ТΔS = ΔG

G = H – TS – Энергия Гиббса.

Физический смысл Энергии Гиббса:

-если изменения ΔGр,т меньше нуля – то самопроизвольно идет процесс в заданном направлении;

-если изменения ΔGр,т больше нуля – самопроизвольно идет обратный процесс, а прямая реакция не идет совсем;

-


если изменения ΔGр,т равна нулю – это важнейшее термодинамическое равновесие.

Вывод: состояние термодинамического равновесия чрезвычайно устойчиво, так как при постоянстве Р, Т система выйти из равновесного состояния не может, так как выход равен возрастанию энергии Гиббса.

Чтобы система вышла из состояния равновесия необходимо изменить какие-либо внешние факторы (Р, Т, концентрация и так далее).

Есть понятие стандартное состояние Гиббса:

ΔGf0 298 [кДж / моль] – справочная величина.

Пользуясь справочными данными можно рассчитать изменение энергии Гиббса любого процесс.

ΔG 298 = ΣniΔ * ΔGf0 298 – ΣnjΔ * ΔGf0 298

продукт реагент

большинство процессов протекает при t более высоких чем стандартная (298). Для пересчета энергии Гиббса на более высокие температуры необходимы справочные данные по теплоемкостям, данные представленные в виде зависимости от температуры.

В справочниках эти данные обычно представлены в виде степенного ряда.

Cp0 = a + bT + cT2 + c’Т-2

где a, b, c, c’ – для каждого вещества свои.

Когда необходимо рассчитать для процесса

ΔCp0 = Δa + ΔbT + ΔcT2 + Δc’Т-2

Где Δa, Δb, Δc, Δc’ - будучи функциями состояния, рассчитываются по формулам:

Δa = Σniа - Σnjа

продукт реагент

Δb = Σnib - Σnjb

продукт реагент

Δc = Σnic - Σnjc

продукт реагент

Термодинамика фазовых равновесий. Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса.

К фазовым равновесиям относятся переходы типа:

-Твердая фаза в равновесии с жидкостью (плавление – кристаллизация);

-Жидкая фаза в равновесии с паром (испарение – конденсация);

-Твердая фаза в равновесии с паром (возгонка – сублимация).

Основные понятия правила фаз:

Фаза (Ф) – это часть системы, имеющая границы раздела с другими ее частями.

Компонент (к) – это химически однородная составляющая системы, обладающая всеми ее свойствами.

Число степеней свободы (С) – это число независимых переменных которые можно произвольно менять не меняя числа фаз в системе.

(С, Ф, К) С = К – Ф +2

Существует правило фаз Гиббса.

Различают однокомпонентные, двухкомпонентные, трехкомпонентные системы (К=1, К=2, К=3).

К=1.

Сmin = 1 – 3 + 2 = 0

Cmax = 1 – 1 + 2 = 2

Для описания однокомпонентных систем выбрали координаты:

Р (давление насыщенного пара)

Т (температура)

dP / dT = ΔHф.п. / (Tф.п. * ΔV)

эта зависимость сохраняется в силе для абсолютно всех фазовых переходов.

Р c

Тв. Ж. a