где
- число светильников, шт.; - мощность всех ламп каждого светильника, кВт; - коэффициент, учитывающий потери мощности в ПРА газоразрядных ламп (для ЛН - С = 1); - потери мощности в осветительной сети, кВт; - число часов использования освещения в году.С учетом норм освещения для расчета количества светильников применяется формула;
, (21)где
- минимальная освещенность, лк; - коэффициент запаса; - площадь помещения, м2; - число ламп в каждом светильнике, шт; - световой поток каждой лампы, лм;h - коэффициент использования светового потока, т.е. отношение потока, падающего на расчетную поверхность, к суммарному потоку всех ламп.
Коэффициент h меняется в широких пределах (0,16 ÷ 0,84) и зависит от следующих факторов: КПД и формы кривой распределения силы света светильников; расчетной высоты расположения (возрастая с ее уменьшением); площади помещения (возрастая с ее увеличением); отношения длины помещения А к его ширине Б (уменьшаясь с увеличением этого отношения); коэффициентов отражения потолка
, стен и расчетной поверхности rр. Коэффициенты отражения rр имеют достаточно большое значение для экономии, за счет рациональной цветовой окраски помещений, например при светлых потолках и стенах коэффициент h больше, чем при темных, на 8 ÷ 18%.Для оценки соответствия нормам фактической освещенности для действующих осветительных установок может использоваться формула:
; (лк). (22)Известно [13], что световой поток
ламп к концу срока их службы значительно уменьшается, например для ЛН – на 15%, ЛЛ – на 40 ÷ 45%, ДРЛ – на 30%. Замена изношенных ламп в процессе эксплуатации может производиться по мере выхода их из строя или методом групповой замены – через определенные интервалы времени, несколько меньше расчетного срока службы (серьезным недостатком последнего метода является большой расход ламп).Коэффициент полезного действия светильников снижается, и форма кривой силы света изменяется, в процессе их эксплуатации без регулярной чистки, за счет загрязнения производственными веществами. Для различных производственных помещений КПД светильников может снижаться в 2 ÷ 10 раз. Поэтому поддержание светильников в надлежащей чистоте имеет большое значение для рационального использования электроэнергии в электроосветительных установках.
Годовая экономия эксплуатационных затрат на лампы при работе на сниженном напряжении составит (руб/год):
; (23)где n – количество ламп, шт;
m – коэффициент, учитывающий зависимость срока службы ламп от напряжения (для ЛН – m = 14; для ЛЛ и ДРЛ – m =3,2);
- стоимость ламп, руб/шт; - стоимость замены лампы, руб/шт.Суммарная годовая экономия от снижения питающего напряжения составит (руб/год):
. (24)Стоимость съэкономленной электроэнергии составит (руб/год):
; (25)где
- стоимость 1 кВт×ч электроэнергии, руб.Оценим возможную экономию электроэнергии, получаемую при регулировании (снижении) питающего напряжения для различных ламп (соответственно – уровень напряжения, в% от номинального; световой поток,% от номинального; экономия электроэнергии, кВт×ч/год;
- мощность номинальная осветительной установки, кВт): для ламп накаливания (ЛН) – 90; 68; 0,15 ; 85; 56; 0,23 ; для ламп ДРЛ – 90; 67; 0,24 ; 85; 51; 0,36 ; для люминесцентных ламп (ЛЛ с компенсированным ПРА) – 90; 90; 0,13 ; 85; 84; 0,19 ; где - время работы лампы на сниженном напряжении.Напряжение в осветительных сетях отклоняется от номинального значения в диапазоне – 10 ÷ +25%. При годовом числе часов горения ламп, равном 3600, напряжение в течение примерно 660 часов составляет 110% от номинального. При перенапряжениях возрастает мощность, потребляемая источником света, с перерасходом электроэнергии, и средний фактический срок службы лампы уменьшается. Например, увеличение напряжения питания на 5% приводит к снижению срока службы лампы накаливания в двое, а газоразрядных ламп – в 1,2 раза.
Согласно СНИП II – 4 – 79 на нормы проектирования искусственного освещения и инструкции по рациональному использованию электроэнергии (Светотехника, 1981, №5. С. 4 – 14) не допускается экономить электроэнергию в осветительных установках за счет применения устройств, уменьшающих мощность, потребляемую осветительными установками, если это приводит к нарушению требований норм. В лампах накаливания допускается снижение напряжения до 0,8 от номинального (
); люминесцентные лампы устойчиво зажигаются при снижении напряжения до 0,8 , а лампы ДРЛ (согласно ГОСТ 16354 – 70) – до 0,85 .Колебания напряжения приводят к перерасходу электроэнергии или снижению нормируемой освещенности. Напряжения у ламп не должно быть выше 105% номинального, а для газоразрядных ламп – не ниже 85%. Расчетное падение напряжения в осветительной электросети допускается не более 2,5%. Снижение напряжения на 1% вызывает уменьшение светового потока ламп: накаливания – на 3 – 4%, люминесцентных ламп – на 1,5% и ламп ДРЛ – на 2,2%. Падение напряжения при запуске электродвигателей может достичь 15 – 20% от номинальной величины в сети. Значительно повышается напряжение в электросети в ночное время, когда остаются включенными на ночь конденсаторные установки для компенсации низкого cos
, при малой величине реактивной мощности.3. Применение экономичных источников света на основе газоразрядных ламп
Большое значение для рационального расходования электроэнергии играет применение экономичных газоразрядных источников света – ЛЛ и дуговых ртутных ламп (ДРЛ). Традиционные ЛН имеют низкий энергетический КПД, так как видимое излучение их составляет не более 6% потребляемой мощности, а ДРЛ имеют более высокий КПД – не менее 17%. Для ЛЛ не рекомендуется применять освещенности менее 75 ÷ 100 лк, так как тогда создается впечатление сумеречности. Световая отдача ГРЛ значительно превосходит таковую для ЛН, например (лм/Вт): для ЛН - 10÷ 20; ЛЛ - 42÷ 62; ДРЛ - 35÷55; ДРИ - 64÷ 90.
Световой поток новых ЛЛ больше, чем у ЛН при мощностях до 40 Вт в 5,8 ÷ 6 раз и при мощностях 80 ÷ 200 Вт в 3,7 ÷ 4,2 раза. Лампы ДРЛ при одинаковой мощности имеют световой поток больше, чем у ЛН в 2,7 ÷ 3,2 раза. Например, для ламп мощностью 200 Вт (250 Вт для ДРЛ) световой поток составляет (лм): ЛН – 2700; ЛЛ – 10000; ДРЛ – 11000.
В процессе эксплуатации эти соотношения изменяются. Наиболее экономичными являются ЛЛ типа ЛБ, поэтому применение более эффективных по цветопередаче ламп типов ЛХБ, ЛД и ЛДЦ должно быть экономически обоснованно, так как у них световой поток составляет 62÷ 95% от ЛБ. Необходимо учитывать, что эксплуатация ЛЛ в закрытых светильниках приводит к снижению светового потока ламп на 21 – 25%.
Выбору для целей общего освещения ламп ДРЛ способствует большая мощность этих ламп в сравнении с ЛЛ. По энергетической экономичности лампы ДРЛ с учетом потерь в ПРА и снижения светоотдачи в процессе эксплуатации не уступают ЛЛ. Сравнение удельных расходов электроэнергии -
для различных типов ламп с учетом потерь в ПРА газоразрядных ламп (кВт×ч/1000лм/1000ч) показывает, что: для ЛН типа НГ - 220 мощностью 1000 Вт в начале эксплуатации - = 55, в конце срока службы - = 64, а для ламп ДРЛ мощностью 1000 Вт, соответственно – 22 и 31; для ламп ЛЛ типа ЛХБ мощностью 200 Вт, соответственно – 22 и 42. Видно, что лампы ДРЛ в условиях длительной эксплуатации не уступают ЛЛ и, даже превосходят по энергетической экономичности. Необходимо учитывать, что к концу срока службы ГРЛ существенно уменьшается их превосходство в экономичности по сравнению с мощными лампами ЛН. Применение ламп ДРЛ мощностью 250, 400 и 700 Вт в сравнении с ЛЛ целесообразно при большой высоте помещении, более тяжелом тепловом режиме работы и отсутствии специальных требований к качеству освещения, где спектральный состав света ламп ДРЛ не противопоказан. Основные параметры ламп типа ДРЛ представлены в таблицах 1 и 2.