Смекни!
smekni.com

Методи розділення та очистки речовин (стр. 2 из 5)

2) Теплота адсорбції – фізична адсорбція простих молекул – 4-20 МДж/кмоль і складних молекул – 40-80 МДж/кмоль при хімічній адсорбції 40-400 МДж/кмоль.

мал.1. Ізотерма адсорбції.

Як випливає з представленої залежності (мал.1.), підвищення концентрації речовини в розчині приводить до збільшення кількості його в адсорбованому стані. На початковій ділянці ізотерми (ділянка 1) цей зв'язок прямо пропорційний але при подальшому збільшенні концентрації речовини в зовнішній фазі залежність стає пологішою (ділянка 2) і при великих концентраціях ізотерма прагне до асимптоти С

(ділянка3). Характер ізотерми обумовлений поступовим насиченням поверхні адсорбенту речовиною, що поглинається.

До найбільш поширених на практиці типів сорбентів можна віднести силікагелі, активоване вугілля, а також різні види сильно пористих або високодисперсних алюміносилікатів.

Силікагель – висушений гель кремнієвої кислоти, має глобулярну структуру, сформовану зі сферичних часток, що дотикаються і зрослися. Добре поглинає полярні речовини і відомий в першу чергу як хороший осушувач, добре сорбує пари органічних речовин, сірководень, аміак, сірнистий газ. Спостерігається ефективна адсорбція полярних домішок із неполярних розчинів. Наприклад, очистка неполярних SiCl

i GeCl
від мікро домішок хлоридів металів.

Активоване вугілля має кристалічну будову і складається із кристалічних агрегатів, які формують розвинуту систему пор. Особливо активними центрами являються ребра і кути кристалітів. Застосовується активоване вугілля на кінцевій стадії очистки від домішок.

Сутність іонного обміну. Іонний обмін являє собою зворотній взаємо обмін іонами з однойменними зарядами між рідким розчином і твердою нерозчинною речовиною, що контактує з цим розчином. Тверда речовина називається іоніт або іонообмінник. Основна відмінність іонного обміну від простої адсорбції полягає в тому, що при іонному обміні проходить стехіометричне заміщення: в обмін на кожний еквівалент одного іона, поглинутого з розчину, іоніт віддає в розчин один еквівалент іншого іона з зарядом того ж знаку. Використовуючи іоніти, можна повністю відділяти іони певного типу із розчинів. Наприклад, типова реакція катіонного обміну з виділенням іонів кальцію із розчину має вигляд:

2NaX+ CaCl

CaX
+ 2NaCl

(тверді фази підкреслено; Х – фіксована група іоніта). Пропускання розчину через шар твердого іоніта NaX буде супроводжуватися поглинанням із розчину іонів Ca

в обмін на іони Na
, що переходять в розчин.

Мал.2. Схематичний розподіл компонентів суміші А+В, що розділяється, в колонках трьох методів хроматографії: а – проявниковий; б – витиснювальний; в – фронтальний.


Хроматографія – це метод розділення, при якому компоненти, що розділяються, розподіляються між двома фазами – нерухомим шаром твердого поглинача з сильно розвинутою поверхнею і потоком рідкого розчину або газової суміші, що фільтруються при проходженні через нерухомий шар.

2.2 Процеси рідинної екстракції

Екстракція в загальному випадку процес вибіркового видобування речовини в рідку фазу. Екстракцію газа рідиною називають абсорбція, твердих речовин рідкими – вилуджування, екстракція розчиненої речовини із одної рідкої фази в іншу – рідинна екстракція або просто екстракція.

Часто використовують воду, як речовину, з якої проводять екстракцію розчиненої речовини. Рідина (екстрагент), з допомогою якої проводять екстрагування, в більшості випадків органічного походження.

Деколи до складу водного розчинника, із якого екстрагують розчинену речовину, вводять висолювач – речовину, що має однойменний іон з екстрагованою сполукою і тому зменшує її розчинність, що тим самим приводить до підвищення степені видобування її з водного розчину.

Для розділення суміші рідин А і С складу F (мал.3.) до них додають розчинник (екстрагент), що змішується з сумішшю не повністю і здатний вибірково розчиняти один з компонентів, в нашому випадку С. Фігуративна точка, фігуративна точка, що відповідає складу суміші трьох компонент, переміщується по прямій FВ. В приведеному прикладі склад потрійної системи відповідає точці М. Склад гетерогенної фази, що утворилася в результаті розшарування потрійної системи, визначається положенням коноди PQ, яка проведена через точку М. Фаза Q має високий вміст розчинника і називається фазою екстракта (або фазою розчинника). Фаза Р з малою концентрацією розчинника називається фазою рафіната (залишка).


Мал.3. Склад і кількість продуктів, що одержують одноступенчатою екстракцією.

Після розділення фаз Q і Р і виділення з них розчинника (дистиляцією або промивкою), одержують відповідно фази складів Е і R. В порівнянні з вихідною сумішшю F суміш Е має більш високий, а суміш R – більш низький вміст компонента С.

Лімітує процес екстракції, як правило, дифузія екстрагованої речовини при змішуванні суміші і екстрагента, тому процес рідинної екстракції проводиться при інтенсивному перемішуванні.

Рідинна екстракція має широке застосування в технології напівпровідників і діелектриків. З її допомогою можна, наприклад, суміші двох речовин розділити з концентруванням кожної з них в різних розчинниках і таке інше.

2.3 Кристалізаційні процеси

Кристалізацією називається перехід речовини з рідкого в твердий кристалічний стан. Кристалізаційні методи очистки базуються на різній розчинності домішок в рідкій і твердій фазах.

В наш час кристалізація із розплавів широко застосовується для очистки напівпровідникових і діелектричних матеріалів. Цей метод, як правило, використовується на кінцевій стадії технологічного процесу очистки речовини. При цьому разом з високою степінню очистки матеріалу від домішок досягається і необхідна досконалість кристалічної структури (фізична чистота), тобто матеріал отримують в вигляді високочистого монокристала.

Для забезпечення максимального очищення кристалізація повинна починатися в строго заданих місцях і відбуватися в визначених напрямках. Така кристалізація називається направленою.

Локалізацію місця і напряму кристалізації на практиці здійснюють завданням градієнта зовнішнього параметра, що викликає кристалізацію. Найчастіше як такий параметр виступає температура, тобто задається градієнт температури що забезпечує направлене відведення теплоти і направлене просування фронту кристалізації. Досить широка по конструктивному оформленню група методів напрямленої кристалізації може бути зведена до трьох основних:

а) витягування кристалів з розплаву (метод Чохральського);

б) нормальної напрямленої кристалізації (метод Бріджмена);

в) зонної перекристалізації або плавки ( вперше запропонований Пфанном ).

Мал.4. 1) 2) 3)

1) Схема вирощування кристала методом витягування з розплаву: 1 – затравка; 2 – шийка кристала: 3 – фронт кристалізації; 4 – переохолджена область розплаву; 5 – тигель; 6 –нагрівник;

2) розподіл температури в печках для вирощування кристлів методом нормальної направленої кристалізації;

3) . Схема вирощування кристала методом зонної плавки:

а – горизонтальна зонна плавка; б – вертикальна безтигельна зонна плавка (1 – затравка; 2 – кристал: 3 – розплавлена зона; 4 – початковий матеріал; 5 – стінки герметичної камери; 6 – індуктор: 7 – кристаллотримач; 8 – тигль).

У методі витягування кристалів з розплаву (див. мал.4.1.) в розплав опускається затравка у вигляді невеликого монокристала, яку потім в більшості різновидів методу безперервно переміщають вгору. Приманка захоплює за собою рідкий стовпчик розплаву, який, потрапляючи в зону нижчої температури безперервно кристалізується.

У методі нормальної направленої кристалізації (див. мал.4.2.) речовину розплавляють в тиглі заданої форми, який потім повільно охолоджують з одного кінця, здійснюючи звідси направлену кристалізацію.

При зонній плавці в злитку речовини розплавляють лише невелику зону, яку переміщають уздовж зразка (див. мал.4.3). У міру її направленого просування попереду зони відбувається плавлення речовини, а позаду його кристалізація.

2.4 Процеси перегонки через газову фазу

Процеси перегонки через газову фазу лежать в основі очищення простих речовин (елементів) і хімічних сполук, що володіють високою пружністю пари, наприклад, фосфору, сюрми, сірки, магнію, кальцію, цинку, рідких хлоридів елементів (наприклад, GeCl

, TiCl
, SiCl
) проміжних продуктів у виробництві напівпровідникових і діелектричних матеріалів у формі летких з'єднань (нижчих галогенідів) і так далі.