Амальгамовий електрохімічний процес глибокого очищення речовин має певні переваги (по високій кратності очищення і вищій продуктивності) перед кристалізацією, вакуумною дистиляцією і іншими методами очищення речовин. Недоліками амальгамового електрохімічного процесу є присутність в кінцевому продукті домішок ртуті, концентрація якої може досягати 0,003 %, використання допоміжних реагентів, води і ртуті високого ступеня чистоти.
Глибокого очищення при електролізі можна досягти шляхом ретельного відділення анодного і катодного простору від середньої камери електростатичної ванни, яке здійснюють за допомогою напівпроникних перегородок (мембран), вибірково пропускаючих до анода і катода лише певні типи іонів. При накладенні електричного поля дифузія іонів через напівпроникні перегородки прискорюється, що збільшує швидкість і ступінь очищення середньої камери електролітичної ванни. Цей різновид електролізу називають електродіалізом. При електродіалізові в середню камеру завантажують суспензію речовини (як правило, слабо діссоціюючої), що очищається, у воді, а в бічні — чисту воду і електроди. При накладанні різниці потенціалів до позитивно зарядженого електроду з середньої камери ванни через мембрану проникають аніони домішок а до негативно зарядженої - катіони домішок. У міру накопичення їх в бічних камерах розчини зливають, а камери знов заповнюють чистою водою. Це сприяє швидшому видаленню домішок електролітів з середньої камери, а також запобігає процесу зворотної дифузії домішок у міру накопичення їх в бічних камерах.
Розділення і очищення у відцентровому полі. Якщо розплав речовини здійснює рух в центрифузі, то в ньому відбувається перерозподіл домішок в результаті дії на них відцентрової сили. Атоми або молекули домішкових з'єднань, важчі, ніж атоми (молекули) основної речовини зосереджуються в периферійних частинах розплаву, легші домішки — у частинах розплаву, розташованих ближче до центру обертання. Проводячи кристалізацію, наприклад розплав літію в центрифузі, що обертається із швидкістю 50
, добиваються очищення основної частини злитка літію від домішок приблизно на два порядки.Розділення в схрещених електричному і магнітному полях. Сучасні промислові мас-сепаратори володіють досить високою роздільною здатністю (по відношенню маси іона до його заряду), що дозволяє успішно проводити розділення ізотопів. Звідси слідує що цим методом розділення може бути досягнутий максимальний ступінь чистоти. Mac-сепаратори в даний час все ширше використовуються для контрольованого здобуття чистих тонких шарів напівпровідників і діелектриків.
Розділення дифузією і термодифузією. Для розділення і очищення газоподібних речовин може бути використане відмінність в швидкостях їх дифузії через напівпроникні (пористі) перегородки, унаслідок чого по одну сторону перегородки концентруються гази, що володіють більшою швидкістю дифузії а по іншу — меншою. Багатократне повторення цього процесу в камері, розділеній великим числом пористих перегородок, дозволяє досягти високого ступеня розділення газів.
Розділення газових сумішей може бути також успішно здійснено за допомогою термічної дифузії. Якщо уздовж посудини з газовою сумішшю створити перепад температур, то це приведе до відмінності між складами суміші в гарячій і холодній частинах посудини. У гарячій частині суміш містить більшу кількість компоненту, що володіє меншою молекулярною масою. Відмінність в складах сумішей в гарячішій і холоднішій частинах посудини буде тим значніша, чим більше заданий перепад температур між ними.
Процеси дифузії через напівпроникні перегородки і термодифузії надзвичайно чутливі до відмінності між масами молекул в газовій суміші, що дозволило успішно використовувати ці процеси для розробки методів розділення ізотопів у формі їх газоподібних з'єднань.
Висновки
На основі сказаного вище можна зробити висновок, що вибір найбільш ефективного методу (або поєднання методів) для очистки кожного індивідуального матеріалу потрібно проводити виходячи з конкретних фізико-хімічних властивостей цього матеріалу і його з'єднань.
Список використаної літератури
1) В.П. Пинзеник, І.М. Миголинець, О.О. Кикинеші "Фізико-хімічні основи матеріалознавства", Ужгород 1993р.
2) Ю.М. Таиров, В.Ф. Цветков "Технология полупроводниковых и диэлектрических материалов", - М.: Высшая школа, 1990р.
3) "Практикум по полупроводникам и полупроводниковим приборам", /Под ред. Шалимовой К.В. – М.: Высшая школа, 1968р.