Смекни!
smekni.com

Методика вивчення методів практичного виявлення та вимірювання радіоактивного випромінювання (стр. 2 из 6)

Проведення вказаних вище занять дозволить більш поглиблено вивчити питання дозиметрії у курсі фізики для типових класів. Дозволить отримати практичні навики роботи із дозиметром, визначати радіаційний фон приміщень на відкритих територій, сформує вміння та навики роботи із радіоактивними речовинами та правила техніки безпеки при поводженні із ними.

У класах із поглибленим вивченням фізики дані теми можна розширити, наприклад на тему «Вимірювання радіоактивних випромінювань. Дозиметри» виділити більшу кількість годин.


Розділ 2. Основні поняття дозиметрії

Розглянемо основні питання теми, які необхідно висвітлити при проведенні занять.

2.1. Доза випромінювання, види поглинутої дози випромінювання

Дозою опромінення називають енергію випромінювання, яка поглинута в одиниці об’єму або маси речовини за весь час впливу випромінювання. Енергія поглинутого опромінення витрачається на іонізацію речовини. Отже доза опромінення характеризує ступінь іонізації речовини, чим більша доза тим більший ступінь іонізації. Саме тому доза опромінення являється мірою поражаючого впливу радіоактивного опромінення. Одна і та ж доза може накопичуватися за різний час, причому біологічний ефект опромінення залежить не тільки від величини дози, але і від часу її накопичення. Чим швидше отримана дана доза опромінення, тим більша її поражаюча здатність.

Існує три види доз: експозиційна, поглинута та еквівалентна. Доза опромінення, що характеризує іонізаційний ефект рентгенівського та гамма – опромінення в повітрі носить назву експозиційної дози. Саме її і вимірюють за допомогою дозиметричних приладів. Вона характеризує джерело та радіоактивне поле, яке він створює. Це потенційна небезпека опромінення. Людина може ввійти в це поле й опромінитися, але може й не ввійти й, отже, не піддатися опроміненню. Але полезпевною дозою випромінювання залишається. Її вимірюють у рентгенах (Р), а в системі СІ - кулонах на кілограм (Кл/кг).

Поглинена доза опромінення - це кількість енергії різних видів іонізуючих випромінювань, поглинена одиницею маси даного середовища. За одиницю поглинутої дози опромінення приймають джоуль на кілограм (Дж/кг) – грей (Гр), а широко розповсюдженою є також позасистемна одиниця - рад.

Еквівалентна доза опромінення враховує ту обставину, що різні види випромінювань створюють різний біологічний вражаючий ефект при одній і тій же дозі випромінювання. Наприклад,

випромінювання наносить людині вражаючий ефект у двадцятьразів більший, ніж така ж доза гамма-випромінювання. Щоб урахувати нерівномірність ураження від різних видів випромінювань уведений «коефіцієнт якості», на який необхідно помножити величину поглиненої дози від певноговиду випромінювання, щоб одержати еквівалентну дозу. Всі національні й міжнародні норми встановлені саме в еквівалентній дозі опромінення. Позасистемною одиницею цієї дози є бер, а в системі СІ - зіверт (Зв).

2.2. Біологічна дія іонізуючого випромінювання

Відомо, що 2/3 загальної маси тканин людинистановлять вода й вуглець, вода під впливом випромінювання розщеплюється на водень Н и гідроксильну групу ОН. Які або безпосередньо, або через ланцюг вторинних перетворень утворюють продукти з високою хімічною активністю: гідратнийоксид

і перекис водню
. Ці сполуки взаємодіють із молекулами органічної речовини тканини, окисляючи й руйнуючи її.

У результаті впливу іонізуючого випромінювання порушуються нормальний плин біохімічних процесів й обмін речовин в організмі. Залежно від величини поглинутої дози випромінювання й індивідуальних особливостей організму зміни можуть бути оборотними або необоротними. При невеликих дозах уражена тканина відновить свою функціональну діяльність.

Будь-який вид іонізуючих випромінювань викликає біологічні зміни в організмі як при зовнішньому (джерело перебуває поза організмом), так і при внутрішнім опроміненні (радіоактивні речовини попадають усередину організму).

Біологічний ефект іонізуючого випромінювання залежить від сумарної дози й часу впливу випромінювання, виду випромінювання, розмірів опроміненої поверхні, індивідуальних особливостей організму.

При однократному опроміненні всього тіла людини можливі біологічні порушення залежно від сумарної поглиненої дози випромінювання. При опроміненні дозами, в 100 - 1000 разів перевищуючу смертельну дозу, людина може загинути під час опромінення.

Міра чутливості різних тканин до опромінення неоднакова. Якщо розглядати тканини органів у порядку зменшення їхньої чутливості до дії випромінювання, то одержимо наступну послідовність: лімфатична тканина, лімфатичні вузли, селезінка, щитовидна залоза, кістковий мозок, зародкові клітки. Більша чутливість кровотворних органів до радіації лежить в основі визначення характеру променевої хвороби. При однократному опроміненні всього тіла людини поглиненою дозою 0,5 Гр через добу після опромінення може різко скоротитися число лімфоцитів.

Зменшиться також і кількість еритроцитів (червоних кров'яних тілець) після закінчення двох тижнів після опромінення (тривалість життя еритроцитів приблизно 100 діб). У здорової людининалічується порядку 1014 червоних кров'яних тілець при щоденному відтворенні 1012 їх, у хворого променевою хворобою таке співвідношення порушується.

Важливим фактором при впливі іонізуючого випромінювання на організм є час опромінення. Зі збільшенням потужності дози вражаючадія випромінювання зростає. Чим більше дробне випромінювання за часом, тим менша його вражаючадія.

Зовнішнє опромінення а-, а також

-частками менш небезпечне. Вони мають невеликий пробіг у тканині й не досягають кровотворних й інших внутрішніх органів. При зовнішньому опроміненні необхідно враховувати
- і нейтронне опромінення, які проникають у тканину на більшу глибину й руйнують її.

Подивимося, які ж процеси відбуваються в результаті іонізації.

При іонізації складних молекул відбувається їхня дисоціація в результаті розриву хімічних зв'язків. Це так називанапрямадія іонізуючого випромінювання. Більше істотну роль у формуванні біологічних наслідків грає механізм непрямої дії іонізуючого випромінювання. Під непрямою дією випромінювання розуміють радіаційно-хімічні зміни в даній речовині, обумовлені продуктами радіолізу води.

Відомо, що в біологічній тканині 70 % по масі становить вода. У результаті іонізації молекули води утворяться вільні радикали

й
за наступною схемою:

У присутності кисню утворяться також вільний радикал гідро перекису і перекис водню, щоє сильними окислювачами.

Вільні радикали й окислювачі, маючи високу хімічну активність, вступають в хімічні реакції з молекулами білка, ферментів й інших структурних елементів біологічної тканини, що приводить до зміни біохімічних процесів в організмі. У результаті порушуються обмінні процеси, придушується активність ферментних систем, сповільнюється й припиняється ріст тканин, виникають нові хімічні сполуки, не властивіорганізму, токсини. Це приводить до порушення життєдіяльності окремих функцій або систем й організму в цілому.

Індуковані вільними радикалами хімічні реакції розвиваються збільшим виходом і втягують у цей процес багато сотень і тисячі молекул, не порушених випромінюванням. У цьомускладається специфіка дії іонізуючого випромінювання на біологічні об'єкти, щополягає в тім, що створений ними ефект обумовлений не стільки кількістю поглиненої енергії, скількитією формою, у якій ця енергія передається. Ніякий інший вид енергії (теплова, електрична й ін.), поглинені біологічним об'єктом у тій же кількості, не приводять до таких змін, які викликає іонізуюче випромінювання.

Наприклад, смертельна доза іонізуючого випромінювання для ссавців дорівнює 5 Гр (500 рад), відповідає поглиненій енергії випромінювання 5 Дж/кг. Якщо цю енергію підвести у вигляді тепла, то вона нагріла б тіло лише на 0,001°С. Саме іонізація атомів і молекул середовищаобумовлюють специфіку дії іонізуючого випромінювання.

2.3. Методи виявлення та вимірювання радіоактивного випромінювання

Для вимірювання рівня радіоактивного випромінювання використовують прилади, які отримали загальну назву дозиметри. Дозиметричні прилади можна класифікувати за призначенням, типу датчика, вимірюванню типу випромінювання, характеру електричних сигналів, тощо.