Смекни!
smekni.com

Механика жидкостей и газов в законах и уравнениях (стр. 2 из 3)

Формула (41.1) называется формулой Торричелли. Из нее следует, что скорость истечения жидкости из отверстия, находящегося на глубине h под открытой поверхностью жидкости, совпадет со скоростью, которую приобретает любое тело, падая с высоты h (в случае, если сопротивлением воздуха можно пренебречь). Этот результат получен в пред­положении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения, определяемого формулой Торричелли, чем больше внутреннее трение в жидкости. Например, глицерин будет вытекать из сосуда медленнее, чем вода.

4. Вязкость. Течение жидкости в трубах

Идеальная жидкость, т. е. жидкость без внутрен­него трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей степени присуще внутреннее трение, называемое также вязкостью. Вязкость проявляется, в частности, в том, что возникшее в жидкости или газе движение, после прекращения действия причин, его вызвавших, постепенно прекращается. Примером может служить движение жидкости в стакане после того, как ее пе­рестают размешивать ложечкой.

Рассмотрим течение жидкости в круглой трубе. Измерения показывают, что при медленном течении скорость частиц жидкости изменяется от нуля в не­посредственной близости к стенкам трубы до макси­мума на оси трубы.

Жидкость при этом оказывается как бы разделенной на тонкие цилиндрические слои, которые скользят друг относительно друга, не пере­мешиваясь (рис. 42.1). Такое течение называется ла­минарным или слоистым (латинское слово lamina означает пластинку, полоску). Отсутствие пе­ремешивания слоев можно наблюдать, создав в стек­лянной трубке диаметра несколько сантиметров сла­бый поток воды и вводя на оси трубы через узкую трубочку окрашенную жидкость (например, анилин). Тогда по всей длине трубы возникнет тонкая окра­шенная струйка, имеющая отчетливую границу с водой.

Из повседневного опыта известно, что для того, чтобы Создать и поддерживать постоянным течение жидкости в трубе, необходимо наличие между кон­цами трубы разности давлений. Поскольку при уста­новившемся течении жидкость движется без ускоре­ния, необходимость действия сил давления указывает на то, что эти силы, уравновешиваются какими-то си­лами, тормозящим движение. Этими силами являет­ся силы внутреннего трения на границе со стенкой трубы и на границах между слоями. Более быстрый слой стремится увлечь за собой более медленный слой, действуя на него с силой F1 направленной по течению. Одновременно более медленный слой стрёмится замедлить движение более быстрого слон, дей­ствуя на него с силой F2y направленном против тече­ния (рис. 42.2).

Экспериментально установлено, что модуль СИЛЫ внутреннего трения, приложенной к площадке 5, ле­жащей на границе между слоями, определяется фор­мулой

где n— называемый вязкостью коэффициент про­порциональности, зависящим от природы и состояния

(например, температуры) жидкости, dv/dz—производная, показывающая, как быстро изменяется в дан­ном месте скорость течения в направлений г, перпен­дикулярном к площадке S. В случае качения жидко­сти в трубе ось z направлена в каждой точке границы между слоями по радиус} грубы (см. pиc, 42.1), Поэтому вместо dv/dz можно написать, dv/df, Знак мо­дуля в формуле (42.1) поставлен в связи с тем, что в зависимости от выбора направления оси z и харак­тера изменения скорости производная dv/dz может быть как положительной, так и отрицательной, в то время как модуль силы является положительной ве­личиной.

Мы уже отмечали, что при ламинарном течении жидкости в круглой трубе скорость равна нулю у стенки трубы и максимальна па оси трубы. Най­дем закон изменения скорости. Выделим воображае­мый цилиндрический объем жидкости радиуса r и длины l (рис. 42.3). При стационарном течении этот объем движется без ускорения. Следовательно, сумма приложенных к нему сил равна нулю. В направлении

движения на жидкость действует сила давления, мо­дуль которой равен p1Пr2; во встречном направле­нии— сила давления, модуль которой равен p2Пr2. Результирующая сил давления имеет модуль

(Пr2 — площадь основания цилиндра).

На боковую поверхность действует тормозящая движение сила внутреннего трения, модуль которой

согласно формуле

(42.1) равен

где rl — площадь бо­ковой поверхности ци­линдра, dv/dr — зна­чение производной на расстоянии r от оси трубы. Скорость убывает с расстоянием от оси труби, поэтому производ­ная dv/dr отрицательна и ее модуль равен —dv/dr {модуль отрицательного числа равен этому числу, взя­тому с обратным знаком).

Приравняв выражения (42.2) и (42.3), придем к дифференциальному уравнению

Разделив переменные, получим уравнение

интегрирование которого дает, что

Постоянную интегрирования С нужно выбрать так, чтобы на стенке трубы (т. е. при г = R) скорость об* ращалась в нуль. Это условие выполняется при

Подстановка этого значения в (42.4) приводит к фор­муле

Скорость на оси трубы равна

С учетом этого формулу (42.5) можно написать в виде

Отсюда следует, что при ламинарном течения скорость изменяется с расстоянием от оси трубы но параболическому закону (рис. 42.4а).

С помощью формулы (42.7) можно вычисти, по­ток жидкости Q, т. е. объем жидкости, протекающей через поперечное сечение трубы и единицу времени. Разобьем сечение трубы на кольца ширины dr (рис. 42.5). Через кольцо радиуса r пройдёт в еди­ницу времени объем жидкости dQ, равный произведе­нию площади кольца rdr на скорость v(t) на рас­стоянии от оси трубы:

(мы воспользовались формулой (42.7)). Проинтег­рировав это выражение по г в пределах ОТ пули до R, получим поток Q:

(S—площадь сечения трубы). Поток можно пред­ставить как произведение среднего по сечению значения скорости <и> на площадь 5. Из формулы (42.8) следует, что при ламинарном течении среднее значение скорости равно половине значения скорости на оси трубы.

Подставив в (42.8) выражение (42.6) дли с>о, по­лучим формулу

которая называется ф о р м у л о й П у а з е й л я . Из нее следует, что поток очень сильно зависит от радиуса трубы.

Естественно, что Q пропорционален отношению {P1 — Р2) / l т. е. перепаду давле­ния на единице длины трубы, а также обратно пропорционален вязкости жидкости n.

Формула Пуазейля использу­ется для определения вязкости жидкостей и газов. Пропуская жидкость или газ через трубку известного радиуса, измеряют перепад давления и поток Q. Затем на основании полученных данных вычисляют n.

Мы все время подчеркивали, что предполагаем те­чение медленным для того, чтобы оно имело ламинар­ный характер. Напомним, что ламинарное течение яв­ляется стационарным. Это означает, что скорость ча­стиц жидкости, проходящих через данную точку про­странства, все время одна и та же. Если увеличивать скорость течения, то при достижении определенного значения скорости характер течения резко меняется. Течение становится нестационарным — скорость ча­стиц в каждой точке пространства все время беспоря­дочно изменяется. Такое течение называется тур­булентным. При турбулентном течении происхо­дит интенсивное перемешивание жидкости. Если в турбулентный поток ввести окрашенную струйку, то уже на небольшом расстоянии от места ее введения окрашенная жидкость равномерно распределится по всему сечению потока. Это можно наблюдать в упоминавшемся выше опыте, если увеличить поток воды в стеклянной трубке.

Поскольку при турбулентном течении скорость в каждой точке все время меняется, можно говорить только о среднем по времени значении скорости, кото­рая при неизменных условиях течения оказывается постоянной в каждой точке пространства. Профиль средних скоростей для одного из сечений трубы при турбулентном течении показан на рис. 42.56. Сравне­ние с рис. 42.5 а показывает, что вблизи стенки трубы скорость изменяется гораздо сильнее, чем при лами­нарном течении; в остальной части сечения скорость изменяется меньше.