Смекни!
smekni.com

Механика, молекулярная физика и термодинамика (стр. 6 из 18)

где m0 – масса тела в той системе отсчета, где тело покоится (масса покоя);

m – масса тела в той системе, относительно которой тело движется;

u – скорость тела относительно системы отсчета, в которой определяется масса m.

Релятивистский импульс:

,

где m – релятивистская масса.

Закон взаимосвязи массы и энергии:

,

где m - релятивистская масса;

E – полная энергия материального объекта.

Кинетическая энергия объекта:

,

где

- полная энергия;
- энергия покоя.

Из закона взаимосвязи массы и энергии следует, что всякое изменение массы тела на Dm сопровождается изменением его энергии на DE:

DE=Dm×c2.

Примеры решения задач

Задача 1 Уравнение движения точки по прямой имеет вид:

x = A+Bt+Ct3, где А = 4 м, В = 2 м/c, С = 0,2 м/с3. Найти: 1) положение точки в моменты времени t = 2 c и t = 5 с; 2) среднюю скорость за время, протекшее между этими моментами; 3) мгновенные скорости в указан­ные моменты времени; 4) среднее ускорение за указанный промежуток вре­мени; 5) мгно­венные ускорения в указанные моменты времени.

Дано:

x = A + Bt + Ct3 A = 4 м B = 2 м/c C = 0,2 м/c3 t1 = 2 c; t2 = 5 c

Решение

1. Чтобы найти координаты точки, надо в уравнение движения подставить значения t1 и t2: x1 = (4+2×2+0,2×23) м = 9,6 м, x2 = (4+2×5+0,2×53) м = 39 м.
x1, x2 <u>- ? u1, u2 - ? <a> a1, a2 - ?

2. Средняя скорость

,

м/с = 9,8 м/с.

3. Мгновенные скорости найдем, продифференцировав по времени уравнение движения:

u1 = (2+3×0,2×22) м/с = 4,4 м/c;

u2 = (2+3×0,2×52) м/с = 17 м/с.

4. Среднее ускорение

,

м/c2 = 4,2 м/с2.

5. Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct.

a1 = 6×0,2×2 м/c2 = 2,4 м/с2;

a2 = 6×0,2×5 м/с2 = 6 м/с2.

Задача 2 Маховик вращается равноускоренно. Найти угол a, ко­то­рый составляет вектор полного ускорения

любой точки маховика с радиусом в тот момент, когда маховик совершит первые N=2 оборота.


Дано:

w0 = 0. N = 2 e = const

Решение Разложив вектор

точки М на тангенци­аль­ное
и нормальное
уско­ре­ния, видим, что иско­мый угол определяется соотно­шением tga=at/an. Поскольку в условии дано лишь число оборотов, перейдем к угловым величинам. Применив формулы:
a - ?

at = eR, an = w2R, где R – радиус маховика, получим

tga =

так как маховик вращается равноускоренно, найдем связь между величинами e и w;

;

Поскольку w0 = 0; j = 2pN, то w2 = 2e×2pN = 4pNe.

Подставим это значение в формулу, получим:

a » 2,3°.

Ответ: a » 2,3°.

Задача 3 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью, пе­ре­ки­ну­той через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити

. Трением в блоке пренебречь.

Дано:

m1 = 2 кг m2 = 1 кг
Решение
Воспользуемся для решения задачи основным законом динамики
где
– равнодействующая всех сил, действующих на тело.
a, FН - ?

На тело 1 и тело 2 действуют только две силы – сила тяжести и сила

натяжения нити. Для первого тела имеем:

(1)

для второго тела:

. (2)

Так как сила трения в блоке отсутствует,

.

Ускорения тел а1 и а2 равны по модулю и направлены в противоположные стороны

.

Получаем из (1) и (2) систему уравнений.

Выберем ось Х, как показано на рисунке и запишем полученную систему уравнений

в проекциях на ось Х

Решая эту систему относительно а и FН, получаем:

= 3,3 м/с2;
= 13 Н.

Ответ: a = 3,3 м/c2 ; FH = 13 Н.

Задача 4 К ободу однородного диска радиусом R=0,2 м прило­жена касательная сила F=98,1 Н. При вращении на диск действует момент сил трения

МТР=4,9 Н×м. Найти массу m диска, если известно, что диск вращается с угловым ускорением e=100 рад/с2.

Дано:

R = 0,2 м F = 98,1 Н MТР = 4,3 Н×м e = 100 рад / c2

Решение Воспользуемся основным законом динамики вращательного движения:

или в скалярной форме

, где

- момент сил, приложенных к телу ( MF - момент силы F, Mтр – момент сил трения );
m - ?

- момент инерции диска.

Учитывая, что MF=F×R, получаем:

.

Отсюда

m = 7,7 кг.

Ответ: m = 7,7 кг.

Задача 5

Вагон массой 20 т, движущийся равнозамедленно, под действием силы трения в 6 кН через некоторое время останавливается. Начальная скорость вагона равна 54 км/ч. Найти работу сил трения и расстояние, которое вагон пройдет до остановки.

Дано:

m = 20 × 10 3 кг Fтр = 6 × 10 3 Н u = 15 м/c Решение По закону сохранения механической энергии изменение полной механической энергии будет определятся работой неконсервативных сил, то есть

.
AТР - ? r - ?

Так как механическая энергия вагона равна его кинети­ческой энергии, в качестве неконсервативной силы выступает сила

трения, в конце пути скорость вагона равна нулю, то

.

Итак:

По определению для работы, совершаемой постоянной силой трения:

м.

Ответ: r = 375 м.

Задача 6 При упругом ударе нейтрона о ядро атома углерода он движется после удара в направлении, перпендикулярном начальному. Считая, что масса М ядра углерода в n=12 раз больше массы m нейтрона, определить, во сколько раз уменьшается энергия нейтрона в результате удара.

Дано:

Решение Ведем обозначения: u1 – скорость нейтрона до удара, u1’ – после удара; u2 – скорость ядра углерода после удара (до удара она равна нулю). По законам сохранения импульса и энергии соответственно имеем:

a - ?