где m0 – масса тела в той системе отсчета, где тело покоится (масса покоя);
m – масса тела в той системе, относительно которой тело движется;
u – скорость тела относительно системы отсчета, в которой определяется масса m.
Релятивистский импульс:
,где m – релятивистская масса.
Закон взаимосвязи массы и энергии:
,где m - релятивистская масса;
E – полная энергия материального объекта.
Кинетическая энергия объекта:
,где
- полная энергия; - энергия покоя.Из закона взаимосвязи массы и энергии следует, что всякое изменение массы тела на Dm сопровождается изменением его энергии на DE:
DE=Dm×c2.
Примеры решения задач
Задача 1 Уравнение движения точки по прямой имеет вид:
x = A+Bt+Ct3, где А = 4 м, В = 2 м/c, С = 0,2 м/с3. Найти: 1) положение точки в моменты времени t = 2 c и t = 5 с; 2) среднюю скорость за время, протекшее между этими моментами; 3) мгновенные скорости в указанные моменты времени; 4) среднее ускорение за указанный промежуток времени; 5) мгновенные ускорения в указанные моменты времени.
Дано:
x = A + Bt + Ct3 A = 4 м B = 2 м/c C = 0,2 м/c3 t1 = 2 c; t2 = 5 c | Решение1. Чтобы найти координаты точки, надо в уравнение движения подставить значения t1 и t2: x1 = (4+2×2+0,2×23) м = 9,6 м, x2 = (4+2×5+0,2×53) м = 39 м. |
x1, x2 <u>- ? u1, u2 - ? <a> a1, a2 - ? | 2. Средняя скорость , |
м/с = 9,8 м/с.
3. Мгновенные скорости найдем, продифференцировав по времени уравнение движения:
u1 = (2+3×0,2×22) м/с = 4,4 м/c;
u2 = (2+3×0,2×52) м/с = 17 м/с.
4. Среднее ускорение
, м/c2 = 4,2 м/с2.5. Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct.
a1 = 6×0,2×2 м/c2 = 2,4 м/с2;
a2 = 6×0,2×5 м/с2 = 6 м/с2.
Задача 2 Маховик вращается равноускоренно. Найти угол a, который составляет вектор полного ускорения
любой точки маховика с радиусом в тот момент, когда маховик совершит первые N=2 оборота.Дано:
w0 = 0. N = 2 e = const | Решение Разложив вектор точки М на тангенциальное и нормальное ускорения, видим, что искомый угол определяется соотношением tga=at/an. Поскольку в условии дано лишь число оборотов, перейдем к угловым величинам. Применив формулы: |
a - ? |
at = eR, an = w2R, где R – радиус маховика, получим
tga =
так как маховик вращается равноускоренно, найдем связь между величинами e и w;
;
Поскольку w0 = 0; j = 2pN, то w2 = 2e×2pN = 4pNe.
Подставим это значение в формулу, получим:
a » 2,3°.Ответ: a » 2,3°.
Задача 3 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью, перекинутой через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити
. Трением в блоке пренебречь.Дано:
m1 = 2 кг m2 = 1 кг | РешениеВоспользуемся для решения задачи основным законом динамики где – равнодействующая всех сил, действующих на тело. |
a, FН - ? |
На тело 1 и тело 2 действуют только две силы – сила тяжести и сила
натяжения нити. Для первого тела имеем:
(1)
для второго тела:
. (2)
Так как сила трения в блоке отсутствует,
.
Ускорения тел а1 и а2 равны по модулю и направлены в противоположные стороны
.
Получаем из (1) и (2) систему уравнений.
Выберем ось Х, как показано на рисунке и запишем полученную систему уравнений
в проекциях на ось Х
Решая эту систему относительно а и FН, получаем:
= 3,3 м/с2; = 13 Н.
Ответ: a = 3,3 м/c2 ; FH = 13 Н.
Задача 4 К ободу однородного диска радиусом R=0,2 м приложена касательная сила F=98,1 Н. При вращении на диск действует момент сил трения
МТР=4,9 Н×м. Найти массу m диска, если известно, что диск вращается с угловым ускорением e=100 рад/с2.
Дано:
R = 0,2 м F = 98,1 Н MТР = 4,3 Н×м e = 100 рад / c2 | Решение Воспользуемся основным законом динамики вращательного движения: или в скалярной форме , где - момент сил, приложенных к телу ( MF - момент силы F, Mтр – момент сил трения ); |
m - ? |
Учитывая, что MF=F×R, получаем:
.Отсюда
m = 7,7 кг.
Ответ: m = 7,7 кг.
Задача 5
Вагон массой 20 т, движущийся равнозамедленно, под действием силы трения в 6 кН через некоторое время останавливается. Начальная скорость вагона равна 54 км/ч. Найти работу сил трения и расстояние, которое вагон пройдет до остановки.
Дано:
m = 20 × 10 3 кг Fтр = 6 × 10 3 Н u = 15 м/c | Решение По закону сохранения механической энергии изменение полной механической энергии будет определятся работой неконсервативных сил, то есть . |
AТР - ? r - ? | Так как механическая энергия вагона равна его кинетической энергии, в качестве неконсервативной силы выступает сила |
трения, в конце пути скорость вагона равна нулю, то
.Итак:
По определению для работы, совершаемой постоянной силой трения:
м.
Ответ: r = 375 м.
Задача 6 При упругом ударе нейтрона о ядро атома углерода он движется после удара в направлении, перпендикулярном начальному. Считая, что масса М ядра углерода в n=12 раз больше массы m нейтрона, определить, во сколько раз уменьшается энергия нейтрона в результате удара.
Дано:
Решение Ведем обозначения: u1 – скорость нейтрона до удара, u1’ – после удара; u2 – скорость ядра углерода после удара (до удара она равна нулю). По законам сохранения импульса и энергии соответственно имеем: | |
a - ? |