Смекни!
smekni.com

Механика, молекулярная физика и термодинамика (стр. 7 из 18)

По условию задачи требуется найти отношение

Из треугольника импульсов (смотри рисунок) имеем:

(mu1)2+(mu¢1)2=(Mu2)2.

С учетом записанных выражений, а также соотношения n=M/m, получим:

u12-u¢12=nu22;

u12+u¢12=n2u22.

Разделив почленно последние равенства, получаем:

.

Отсюда

=1,18.

Ответ: a = 1,18.

Задача 7 Круглая платформа радиусом R=1,0 м, момент инерции которой I=130 кг×м2, вращается по инерции вокруг вертикальной оси, делая n1=1,0 об/с. На краю платформы стоит человек, масса которого m=70 кг. Сколько оборотов в секунду n2 будет совершать платформа, если человек перейдет в её центр? Момент инерции человека рассчитывать как для материальной точки.

Дано:

R = 1м
I = 130 кг × м2 n1 = 1c-1 m = 70 кг

Решение Согласно условию задачи, платформа с человеком вращается по инерции. Это означает, что результирующий момент всех внешних сил, приложенных к вращающейся системе, равен нулю. Следовательно, для системы “платформа – человек” выполняется закон сохранения момента импульса, который запишем в скалярной форме: L1 = L2 , (1)

n2 - ?

где L1 - импульс системы с человеком, стоящим на краю платформы, L2 - импульс системы с человеком, стоящим в центре платформы.

L1 = I1w1 = (I+mR2)×2pn1, (2)

L2 = I2w2 = I×2pn2, (3)

где mR2 - момент инерции человека, I1 = I+mR2 - начальный момент инерции

системы, I2 - конечный момент инерции системы, w1 и w2 - начальная и конечная угловые скорости системы. Решая систему уравнений (1) - (3), получаем:

n2 = n1(I+mR2)/I = 1,5 об/с.

Ответ: n2 = 1,5 с-1.

Задача 8

Определить кинетическую энергию (в электронвольтах) и релятивистский импульс электрона, движущегося со скоростью u = 0,9 c (

-скорость света в вакууме).

Дано:

u = 0,9 c Решение Т.к. скорость частицы сопоставима по значению со скоростью света в вакууме, то частицу нельзя считать классической. Для нахождения кинетической энергии воспользуемся формулой:
ЕК, р - ?

.

- масса покоя электрона .

Так как

,то

Можно было найти значение кинетической энергии сразу в электрон вольтах, учитывая, что энергия покоя электрона

Релятивистский импульс находим по формуле

,

.

Ответ: EK » 0,66 МэВ; р » 5,6 ×10-22 кг×м/c.

Задачи для самостоятельного решения

1. Поезд движется прямолинейно со скоростью u0 = 180 км/ч. Внезапно на пути возникает препятствие, и машинист включает тор­мозной механизм. С этого момента скорость поезда изменя­ется по закону u = u0-at2, где а=1м/с3. Каков тормозной путь поезда? Через какое время после начала торможения он остановится?

Ответ: х»235 м, t»7 с

2. Колесо радиусом R=0,1 м вращается так, что зависимость угла пово­ро­та радиуса колеса от времени дается уравнением j=A+Bt+Ct3, где А, В, С – пос­тоянные; В=2 рад/с и С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через 2 с после начала движения следующие величины: 1) угловую ско­рость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное уско­рение; 5) нормальное ускорение.

Ответ: w=14 рад/с; u=1,4 м/с; e=12 рад/с2; at=1,2 м/с2; an=19,6 м/с2.

3. По наклонной плоскости, образующей угол a с горизонтом, скользит тело. Коэффициент трения тела с плоскостью m. Определить ускорение, с которым движется тело.

Ответ: a = g(sina - m×cosa)

4.Тонкий однородный стержень длиной L=50 см и массой m=400 г вращается с угловым ускорением

вокруг оси, проходящей перпендикулярно стержню через его середину. Определить момент силы, под действием которой вращается стержень.

Ответ: M=0,025 Н×м

5. Камень брошен под углом 600 к поверхности земли. Кинетическая энергия камня в начальный момент равна 20 Дж. Определить кинетическую и потенциальную энергии камня в наивысшей точке его траектории. Сопротивлением воздуха пренебречь.

Ответ: 5 Дж; 15 Дж.

6. Два шара подвешены на параллельных нитях одинаковой длины так, что они соприкасаются. Масса первого шара 0,2 кг, масса второго 100 г. Первый шар отклоняют так, что его центр тяжести поднимается на высоту 4,5 см, и отпускают. На какую высоту поднимутся шары после соударения, если удар неупругий?

Ответ: H » 2см

7. Тонкий однородный стержень длиной L может вращаться во­круг горизонтальной оси, проходящей через конец стержня перпен­ди­ку­лярно ему. Стержень отклонили на 90° от положения равновесия и от­пус­тили. Определить скорость u нижнего конца стержня в момент про­хож­дения положения равновесия.

Ответ:

8. Кинетическая энергия электрона равна 1МэВ. Определить скорость электрона .

Ответ:

Контрольное задание №1

101. Пассажир электропоезда, движущегося со скоростью 15 м/с, заметил, что встречный поезд длиной 210 м прошел мимо него за 6,0 с. Определить скорость встречного поезда.

102. При неподвижном эскалаторе метрополитена пассажир под­ни­мается за t1=120 с, а по движущемуся при той же скорости отно­си­тель­но ступенек – за t2=30 с. Определить время подъема пасса­жира, непод­виж­но стоя­щего на движущемся эскалаторе.

103. Определить скорость моторной лодки относительно воды, если при дви­же­нии по течению реки её скорость 10 м/с, а при движении против течения – 6,0 м/с. Чему равна скорость течения воды в реке?

104. Скорость поезда, при торможении двигающегося равно­замедленно, уменьшается в течение 1 мин от 40 км/ч до 28 км/ч. Найти ускорение поезда и расстояние, пройденное им за время торможения.

105. Движение материальной точки задано уравнением x=at+bt2+ct3, где

a=5 м/с, b=0,2 м/с2, с=0,1 м/с3. Определить скорость точки в момент времени t1=2 с, t2=4 с, а также среднюю скорость в интервале времени от t1 до t2.

106. Скорость материальной точки, движущейся вдоль оси X, опре­деляется уравнением uX = 0,2-0,1t. Найти координату точки в момент времени t=10 с, если в начальный момент времени она находилась в точке x0=1 м.

107. Самолет для взлета должен иметь скорость 100 м/с. Определить время разбега и ускорение, если длина разбега 600 м; движение самолета при этом считать равноускоренным.

108. Автомобиль движется со скоростью u1=25 м/с. На пути S=40 м про­изводится торможение, после чего скорость уменьшается до u2=15 м/с. Считая движение автомобиля равнозамедленным, найти модуль ускорения и время торможения.

109. Первую половину пути тело двигалось со скоростью u1 = 2 м / с, вторую половину пути - со скоростью u2 = 8 м / с. Определить среднюю скорость движения.

110.Точка прошла половину пути со скоростью 10 км/ч. Оставшуюся часть пути она половину времени двигалась со скоростью 18 км/ч, а последний участок - со скоростью 25,2 км/ч. Найти среднюю скорость движения точки.

111. Определить угловое ускорение маховика, частота вращения кото­рого за время N=20 полных оборотов возросла равномерно от n0=1 об/c до n=5 об/с.

112. Определить зависимость угловой скорости и углового ускорения от времени для твердого тела, вра­щающегося вокруг неподвижной оси z по закону j=at-bt2, где a=20 рад/с, b=1 рад/с2. Каков характер движения этого тела? Построить графики зависимости угловой скорости и углового ускорения от времени.

113. Колесо радиусом R=10 см вращается с постоянным угловым ус­ко­ре­ни­ем e=3,14 рад/с2. Найти для точек на ободе колеса к концу первой секунды пос­ле начала движения: 1) угловую скорость; 2) линейную скорость; 3) тан­ген­циальное ускорение; 4) нормальное ускорение; 5) полное ускорение.

114. Твёрдое тело вращается вокруг неподвижной оси по закону
j = 6,0 t -2,0 t3. Найти средние значения угловой скорости и углового ускорения за промежуток времени от t = 0 до остановки.