Смекни!
smekni.com

О парадоксе существования волн электромагнитного поля и их способности переноса полевой энергии (стр. 2 из 4)

В этой связи напомним основные физические представления о переносе энергии посредством волнового процесса, например, рассмотрим распространение волн от брошенного в воду камня. Частицы воды массой

, поднятые на гребне волны на высоту
, имеют запас потенциальной энергии
, а через четверть периода колебаний, когда гребень волны спадает, в соответствии с законом сохранения энергии потенциальная энергия частиц воды переходит в кинетическую энергию их движения
, где скорость частиц воды
. Наличие взаимодействия молекул воды и приводит к возбуждению механической поверхностной поперечной волны, которая переносит в волновом процессе механическую энергию так, что
. Физически очевидно считать, что механизм переноса энергии ЭМ волнами в главном должен быть аналогичен, как и у других волн иной физической природы, возможно обладая при этом, исходя из электродинамических уравнений Максвелла, определенной спецификой и даже уникальностью.

Для большей убедительности наших аргументов чисто формально рассмотрим энергетику распространения некой гипотетической ЭМ волны, у которой имеется сдвиг фазы колебаний между ее компонентами на

:
и
. Физически очевидно, что подставлять их в соотношение (3) не имеет смысла, поскольку, согласно уравнениям Максвелла, теоремы Пойнтинга (2) для них нет, да и данные волновые решения принципиально никак не следуют из уравнений (1). Однако весьма интересно вычислить для такой волны просто поток вектора Пойнтинга
в данной точке:

.

Тогда здесь после усреднения по времени мы приходим к физически разумному результату, когда в пространстве без потерь посредством обсуждаемой гипотетической волны переносится ЭМ энергия

, не зависящая от времени и точек пространства. Следовательно, в данном случае, как и должно быть, имеем закон сохранения ЭМ энергии. К сожалению, как мы убедились выше, это невозможно в принципе, поскольку, согласно уравнениям Максвелла, в Природе такие гипотетические ЭМ волны не реализуются.

Итак, проблема с выяснением физического механизма переноса энергии “обычными” волнами ЭМ поля объективно существует, и для ее разрешения требуется, по всей видимости, весьма нестандартный подход. Однако в наличии у нас имеется только система уравнений электродинамики Максвелла, а потому для разрешения обсуждаемого здесь парадокса ничего не остается, как продолжить критический анализ именно уравнений (1) с целью поиска новых (скрытых) реалий в их физическом содержании. Несмотря на весьма малую вероятность успеха в поиске, такие реалии в уравнениях (1) действительно были обнаружены [3], а их суть заключена в соотношениях первичной взаимосвязи ЭМ поля с компонентами электрической

и магнитной
напряженности и поля ЭМ векторного потенциала с электрической
и магнитной
компонентами:

(a)

, (b)
, (5)

(c)

, (d)
.

Соотношение (5a) вводится с помощью уравнения (1d), поскольку дивергенция ротора произвольного векторного поля тождественно равна нулю. Соответственно, (5b) следует из уравнения (1b) при

, справедливого для сред с локальной электронейтральностью. Далее подстановка (5a) в (1а) дает (5c), а подстановка (5b) в (1c) с учетом закона Ома
приводит к (5d). Здесь три представленных соотношения достаточно известны [1], а соотношение (5d), по-видимому, просто не сочли достойным должного внимания.

Однако объединение полученных четырех соотношений в систему (5) оказалось весьма конструктивным, поскольку в этом случае возникает система дифференциальных уравнений, описывающих значительно более сложное и необычное с точки зрения общепринятых воззрений вихревое векторное поле, состоящее из совокупности функционально связанных между собой четырех полевых компонент

,
и
,
, которое физически логично назвать реальным электромагнитным полем.

Объективность существования указанного четырехкомпонентного вихревого поля иллюстрируется нетривиальными следствиями из полученных выше соотношений, поскольку подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых электродинамических уравнений, структурно аналогичной системе традиционных уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала с электрической

и магнитной
компонентами:

(a)

, (b)
, (6)

(c)

, (d)
.

Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в математической задаче Коши для уравнений (6a) и (6c), что делает эту систему уравнений замкнутой.

Соответственно, математические операции с соотношениями (5) позволяют получить [3] еще две других системы уравнений:

для электрического поля с компонентами

и

(a)

, (b)
, (7)

(c)

, (d)
,

и для магнитного поля с компонентами

и
:

(a)

, (b)
, (8)

(c)

, (d)
.

Кстати, если считать соотношения (5) исходными, то из них подобным образом следуют и уравнения системы (1), справедливые для локально электронейтральных сред (

). Таким образом, уравнения системы (5) первичной взаимосвязи компонент ЭМ поля и поля ЭМ векторного потенциала, безусловно, фундаментальны.

Далее, как и должно быть, из этих систем электродинамических уравнений непосредственно следуют (аналогично выводу формулы (2)) соотношения баланса:

судя по размерности, для потока момента ЭМ импульса из уравнений (6)

(9)