Однако вернемся к анализу энергетики распространения составляющих реального электромагнитного поля в виде плоских волн в однородной диэлектрической среде без потерь (
). Вначале обратимся к закону сохранения электрической энергии, соотношение которого согласно (10) запишется как:. (12)
Выясним, выполняется ли это выражение для плоской монохроматической электрической волны, полевые компоненты которой, согласно волновым решениям уравнений системы (7), обладая сдвигом фазы на
, имеют следующий вид: и . Тогда, подставляя их в соотношение (12), приходим к соотношению:.
Такой результат вполне удовлетворяет закону сохранения электрической энергии, поскольку усреднение по времени этого соотношения дает
. (13)Итак, в случае электрического поля мы приходим к физически разумному результату, когда посредством электрической волны переносится чисто электрическая энергия
, в рассматриваемом случае не зависящая от времени и точек пространства. Таким образом, распространение электрической волны, как и следовало ожидать, отвечает логике наших рассуждений и действительно удовлетворяет закону сохранения энергии.Соответственно, для магнитного поля, распространяющегося в однородной среде без потерь, закон сохранения магнитной энергии согласно (11) запишется в виде соотношения:
. (14)
Рассмотрим, как выполняется этот закон для плоской монохроматической магнитной волны, полевые компоненты которой, согласно волновым решениям уравнений (8), имеют следующий вид:
и . Подставляя их в соотношение (14) и проводя аналогичные рассуждения как при выводе формулы (13), получаем в итоге: . (15)Итак, в случае магнитного поля снова приходим к физически здравому результату, когда в пространстве без потерь посредством магнитной волны переносится чисто магнитная энергия
, не зависящая от времени и точек пространства. Следовательно, распространение магнитной волны также удовлетворяет закону сохранения энергии.Таким образом, аргументированно установлено, что в Природе объективно существует сравнительно сложное и необычное с точки зрения современных представлений вихревое четырехвекторное поле в виде совокупности функционально связанных между собой четырех полевых компонент
, и , . Это поле, условно названное реальным электромагнитным полем, реализуется четверкой составляющих его электродинамических полей, состоящих из пар вышеуказанных компонент: электрическое поле с и , магнитное поле с и , электромагнитное поле с и , наконец, поле векторного потенциала с и . Однако способностью к непосредственному распространению в пространстве в виде волн, отвечающих обычным физическим представлениям о волновом процессе, обладают только электрическое и магнитное поля за счет наличия у этих волн сдвига фазы на между их компонентами и , соответственно, и . Реализация же собственно волн ЭМ поля и ЭМ векторного потенциала невозможна в принципе, хотя сами эти поля, как показано выше, существуют и распространяются опосредованно в виде псевдоволн, поскольку их синфазные компоненты являются составной частью компонент электрической и магнитной волн, распространяющихся обычным образом.Тем самым все составляющие реального электромагнитного поля объективно перемещаются в пространстве совместно в виде единого волнового процесса, при котором переносятся электрическая энергия, магнитная энергия, ЭМ энергия на единицу частоты и момент ЭМ импульса. Важно понимать, что с концептуальной точки зрения разделение реального электромагнитного поля на составляющие его поля весьма условно и является переходным во времени, поскольку это в определенной мере диктуется общепринятыми физическими представлениями и современной практикой аналитического описания явлений электромагнетизма.
К сожалению, в настоящее время существующими методами регистрации электродинамических полей реально можно наблюдать только псевдоволны “обычного” ЭМ поля, компоненты
и которых синфазно распространяются в пространстве. И хотя реальное наблюдение волн остальных обсуждаемых здесь полей – дело будущего, объективность их существования и неоспоримая практическая значимость достоверно подтверждается принципиальной невозможностью реализации без их посредства целого ряда физических характеристик ЭМ поля, в частности, способности переноса ЭМ энергии. Как видим, застарелый парадокс в механизме существования синфазных волн ЭМ поля и их способности переноса энергии этого поля, наконец, успешно и весьма кардинально разрешен, а результаты проведенных исследований представляют собой серьезную концептуальную модернизацию основных физических воззрений на структуру и свойства ЭМ поля в классической электродинамике.Литература
1. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980.
2. Пирогов А.А. // Электросвязь. 1993. №5. С. 13-14.
3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37; // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Секция “Профессиональное физическое образование”. С. 127-129; // Вестник Воронежского государственного технического университета. 2007. Т. 3. № 11. С. 75-82.
4. Сидоренков В.В. // http://revolution./physics/00023052.html .
5. Докторович З.И. // Заявленное открытие "Магнитные поперечные волны" приоритетная справка 32-ОТ №10247, дата поступления 5 мая 1980 г.; // http://www.sciteclibrary.ru/rus/catalog/pages/4797.html .
6. Соколов И.В. // УФН. 1991. Т. 161. № 10. С. 175-190.
7. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221.
8. Сидоренков В.В. // http://revolution./physics/00036062.html .