Из рис. 2.2 следует, что возникающая при замене (2.1.28) на (2.1.52) относительная разность
, возрастает при увеличении постоянной распада (уменьшении периода полураспада) и для короткоживущих нуклидов (
T1/2 ~ 100 сут.) на фронте загрязнителя составляет более 0,4. Однако, абсолютная разность плотностей при этом уменьшается с ростом At и для тех же короткоживущих нуклидов становится ничтожно малой (рис. 2.1). Расчёты приведены для безразмерного времени
t = 10, что соответствует размерному времени ~ 30 лет. При уменьшении расчётного времени погрешности также уменьшаются.
На рис. 2.3 видно, что и сами абсолютные значения плотностей короткоживущих загрязнителей для указанного момента времени на границе зоны загрязнения практически обращаются в ноль. При увеличении периода полураспада нуклида до ~ 30 лет абсолютное значение плотности его на границе зоны загрязнения остаётся весьма значительным (рис. 2.3), но относительная разность между результатами (2.1.28) и (2.1.52) составляет несколько процентов (рис. 2.2). Уменьшение при расчётах коэффициента δ на порядок (
) приводит к уменьшению абсолютной и относительной разности ещё примерно вдвое.
Всё это позволяет для практических расчётов пренебречь радиоактивным распадом в водоупорных пластах, что существенно упрощает расчётные формулы. Поэтому в дальнейшем мы и в массо- и в теплообменной задаче будем игнорировать этот распад.
Поскольку вклад радиоактивного распада описывается сомножителем
, то можно утверждать, что концентрация радиоактивного загрязнителя уменьшается в е раз за счет распада на расстояниях, определяемых простым соотношением
Re=
h =
. Отсюда следует, что для короткоживущих изотопов зона загрязнения невелика. С другой стороны, для уменьшения зоны влияния долгоживущих радиоактивных изотопов следует уменьшать скорость фильтрации.
Полученное решение содержит функцию Хевисайда, которая позволяет указать, что плотность радиоактивных изотопов обращается в ноль при r ≥
. Это соотношение позволяет определить радиус зоны радиоактивного заражения
При Аt = 0 из (2.1.52) – (2.1.54) следуют решения без учета радиоактивного распада
Пренебрежение влиянием массообмена с окружающей средой на плотность примесей в пласте в (2.1.52) – (2.1.54), позволяет получить приближение, которое можно с высокой точностью использовать для расчета тепловых полей в подземных горизонтах
Устремляя δ → 0 в (2.1.59) – (2.1.61), получим так называемое «бездиффузионное приближение»
границы применимости которого обсуждается в 2.3.
На рис.2.4 показаны расчёты зависимости в нулевом приближении плотности радиоактивного загрязнителя от расстояния до оси скважины. С увеличением времени возрастает радиус зоны загрязнения.
На рис. 2.5 приведены результаты расчётов плотности радиоактивных примесей в нулевом приближении в зависимости от безразмерной пространственной координаты, отнесённой к радиусу зоны загрязнения (
). Как видно из сопоставления кривых уменьшение концентрации загрязнителя определяется не только диффузионными процессами (кривая
1), но и, в значительной степени, радиоактивным распадом (кривые
2 – 4).
Несмотря на то, что обычно вклад диффузионных процессов очень мал, в рассматриваемом случае происходят значительные изменения концентрации на фронте зоны возмущений (кривая 1 на обоих рисунках). Главными причинами этого эффекта являются повышенные градиенты концентрации между пластом и окружающими породами и большие времена закачки, которая осуществляется обычно десятки лет. При постоянных распада At >0.01 становится существенным вклад радиоактивного распада. При At > 0.1 процесс радиоактивного распада является преобладающим и практически полностью определяет распределение концентрации радиоактивных примесей. Отметим, что при больших временах в пласте устанавливается стационарное поле, определяемое соотношением
, следующим из (2.1.52).
Графики, представленные на рис. 2.6 аналогичны предыдущим (рис. 2.5). однако вклад диффузионных процессов в данном случае становится меньшим в силу уменьшения d. При этом общие тенденции остаются прежними.
На рис 2.7 представлена зависимость вклада диффузионного массообмена с окружающей средой от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения Rd. Из рисунка следует, что влияние диффузионного массообмена для больших времён (~10 лет) вблизи фронта загрязнения является весьма существенным. В расчетах приято Pd = 100, δ = 10-3, At = 0. Последнее соответствует пренебрежению радиоактивным распадом.