,
где
- единичная функция Хевисайда
В нашем случае имеем
Для случая стационарного поля примесей
совершив обратное преобразование Лапласа – Карсона, и перейдя в пространство оригиналов, решение задачи в нулевом приближении представим в виде
При этом радиус зоны термического влияния закачиваемой жидкости
Для случая, когда плотность источников загрязнения нестационарна, наряду с указанными выше соотношениями необходимо использовать следующие:
поскольку подынтегральное выражение в этом случае может быть представлено в виде
Осуществив переход в пространство оригиналов в (3.1.37), получим
Для пласта
для кровли (3.1.40) и подошвы (3.1.41)
При пренебрежении радиоактивным распадом At = 0, полученные решения совпадают с известными для температурного поля при закачке холодной или горячей воды в пласт [30]
Если пренебречь влиянием теплообмена с окружающей средой на температуру в пласте, то вместо (3.1.42) – (3.1.44) получим квазиадиабатическое приближение
Для малых времен применимо адиабатическое приближение
В данном пункте осуществлён переход в пространство оригиналов для случая , когда выражение для плотности в (3.1.23) – (3.1.25) представлено зависимостью (2.1.47)
Воспользовавшись приведенными выше соотношениями (3.1.26) – (3.1.28), получим следующие выражения для температурного поля в нулевом приближении:
Таким образом, нами получены выражения (3.2.4) – (3.2.6), определяющие в нулевом приближении температурное поле в пористом пласте и окружающих его породах.
На рис.3.1 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от времени для безразмерного расстояния r=20 (что соответствует размерному расстоянию ~ 200 м) от оси скважины. Период полураспада изотопа полагается ~ 30 лет. При расчётах считается, что объёмы закачки составляют ~ 100 м3/сут. Графики построены для загрязнителя с различной активностью: 1 ~0.1 Ки/л, 2 ~0.05 Ки/л, 3 ~0.01 Ки/л, 4 ~0 Ки/л. С увеличением времени температура возрастает. Величина температуры в данной точке в каждый фиксированный момент времени тем выше, чем больше активность препарата, причём для высокоактивных загрязнителей рост температуры в основном определяется энергией, выделяющейся при радиоактивном распаде.
На рис.3.2 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от расстояния до оси скважины для момента времени t= 0.3, что соответствует размерному времени ~ 1 года. Период полураспада Т1/2 = 30 лет. Из анализа кривых следует, что при различных значениях активности загрязнителя 1~ 0.5 Ки/л, 2 ~ 0.3 Ки/л, 3~ 0.1 Ки/л на некотором расстоянии от скважины наблюдается значительный рост температуры пласта по сравнению температурой, определяемой теплофизическими свойствами закачиваемой жидкости без загрязнителя – 4 . Причём этот рост тем более значим, чем больше активность нуклида.
На рис. 3.3 показаны расчёты зависимости в нулевом приближении температуры от вертикальной координаты для безразмерного времени t= 10, что соответствует размерному времени ~ 30 лет. Период полураспада Т1/2 = 30 лет. Графики построены для загрязнителя, активность которого ~ 0.1 Ки/л на различных расстояниях от оси скважины 1 – 0, 2 – h, 3 – 5h, 4 – 10h, 5 – 20h, 6 – 30h, 7 – 40h. Максимальное значение температуры достигается примерно на расстоянии 10hот оси скважины. Для выбранного временного промежутка возмущение температурного поля в вертикальном направлении на расстоянии большем 10h являются несущественными.