Смекни!
smekni.com

Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты (стр. 21 из 26)

,

где

- единичная функция Хевисайда
(3.1.26)
,
(3.1.27)

В нашем случае имеем

,
(3.1.28)
где
,
(3.1.29)
,
(3.1.30)

Для случая стационарного поля примесей

совершив обратное преобразование Лапласа – Карсона, и перейдя в пространство оригиналов, решение задачи в нулевом приближении представим в виде
(3.1.31)
(3.1.32)
(3.1.33)

При этом радиус зоны термического влияния закачиваемой жидкости

RT=h
=
.
(3.1.34)

Для случая, когда плотность источников загрязнения нестационарна, наряду с указанными выше соотношениями необходимо использовать следующие:

,
(3.1.35)
,
(3.1.36)

поскольку подынтегральное выражение в этом случае может быть представлено в виде

.
(3.1.37)

Осуществив переход в пространство оригиналов в (3.1.37), получим

.
(3.1.38)

Для пласта

(3.1.39)

для кровли (3.1.40) и подошвы (3.1.41)

(3.1.40)

(3.1.41)

При пренебрежении радиоактивным распадом At = 0, полученные решения совпадают с известными для температурного поля при закачке холодной или горячей воды в пласт [30]

(3.1.42)
(3.1.43)
(3.1.44)

Если пренебречь влиянием теплообмена с окружающей средой на температуру в пласте, то вместо (3.1.42) – (3.1.44) получим квазиадиабатическое приближение

(3.1.45)
(3.1.46)
(3.1.47)

Для малых времен применимо адиабатическое приближение

(3.1.48)
(3.1.49)

3.2. Переход в пространство оригиналов для нулевого представления плотности загрязнителя

В данном пункте осуществлён переход в пространство оригиналов для случая , когда выражение для плотности в (3.1.23) – (3.1.25) представлено зависимостью (2.1.47)

(3.2.1)
(3.2.2)
(3.2.3)

Воспользовавшись приведенными выше соотношениями (3.1.26) – (3.1.28), получим следующие выражения для температурного поля в нулевом приближении:

(3.2.4)
(3.2.5)
(3.2.6)

Таким образом, нами получены выражения (3.2.4) – (3.2.6), определяющие в нулевом приближении температурное поле в пористом пласте и окружающих его породах.

3.3. Анализ результатов расчетов по нулевому приближению

На рис.3.1 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от времени для безразмерного расстояния r=20 (что соответствует размерному расстоянию ~ 200 м) от оси скважины. Период полураспада изотопа полагается ~ 30 лет. При расчётах считается, что объёмы закачки составляют ~ 100 м3/сут. Графики построены для загрязнителя с различной активностью: 1 ~0.1 Ки/л, 2 ~0.05 Ки/л, 3 ~0.01 Ки/л, 4 ~0 Ки/л. С увеличением времени температура возрастает. Величина температуры в данной точке в каждый фиксированный момент времени тем выше, чем больше активность препарата, причём для высокоактивных загрязнителей рост температуры в основном определяется энергией, выделяющейся при радиоактивном распаде.

Рис 3.1. Зависимость в нулевом приближении температуры в пористом пласте от времени при фиксированной точке наблюдения r=20. Графики построены для различных значений активностей раствора (Ки/л): 1~ 0.1, 2 0.05, 3 0.01, 4 0. Другие расчётные параметры
,
, Кг=40, At =0.3, Pt = 102

На рис.3.2 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от расстояния до оси скважины для момента времени t= 0.3, что соответствует размерному времени ~ 1 года. Период полураспада Т1/2 = 30 лет. Из анализа кривых следует, что при различных значениях активности загрязнителя 1~ 0.5 Ки/л, 2 ~ 0.3 Ки/л, 3~ 0.1 Ки/л на некотором расстоянии от скважины наблюдается значительный рост температуры пласта по сравнению температурой, определяемой теплофизическими свойствами закачиваемой жидкости без загрязнителя – 4 . Причём этот рост тем более значим, чем больше активность нуклида.

Рис 3.2. Зависимость в нулевом приближении температуры в пористом пласте от расстояния до оси скважины для момента времени t=0.3. Графики построены для постоянной распада At =0.3 и для различных значений Q: 1 Q= 50, 2 30, 3 10, 4 – 0. Другие расчётные параметры
,
,
,
, Кг = 20, m= 0.4, Pt = 102

На рис. 3.3 показаны расчёты зависимости в нулевом приближении температуры от вертикальной координаты для безразмерного времени t= 10, что соответствует размерному времени ~ 30 лет. Период полураспада Т1/2 = 30 лет. Графики построены для загрязнителя, активность которого ~ 0.1 Ки/л на различных расстояниях от оси скважины 10, 2h, 3 – 5h, 4 – 10h, 5 – 20h, 6 – 30h, 7 – 40h. Максимальное значение температуры достигается примерно на расстоянии 10hот оси скважины. Для выбранного временного промежутка возмущение температурного поля в вертикальном направлении на расстоянии большем 10h являются несущественными.