Смекни!
smekni.com

Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты (стр. 3 из 26)

– коэффициенты теплопроводности в вертикальном направлении, Вт/(м·К);

– плотности загрязнителя в различных пластах, кг/м3.

Глава I. ПОСТАНОВКА ЗАДАЧИ ТЕПЛО- И МАССОПЕРЕНОСА ПРИ ФИЛЬТРАЦИИ ЖИДКОСТИ С РАДИОАКТИВНЫМ ЗАГРЯЗНИТЕЛЕМ В ГЛУБОКО ЗАЛЕГАЮЩИХ ПЛАСТАХ

1.1. Некоторые аспекты развития методов расчётов температурных и концентрационных полей в пластах

Закачка растворов радиоактивных примесей в глубоко залегающие пористые пласты создает необходимость расчёта взаимосвязанных полей концентрации и температуры, что сводится к решению задач конвективной теплопроводности и конвективной диффузии. Это приводит к системе уравнений, включающей в себя уравнения непрерывности, Навье-Стокса, энергии и состояния вещества. Получающиеся дифференциальные уравнения в частных производных, на которые накладываются начальные и граничные условия, не могут быть решены без введения упрощений.

Одним из таких упрощений в задачах конвективной теплопроводности и диффузии является метод сосредоточенной ёмкости [50, 51, 52, 73], который заключается в выделении областей с мало изменяющейся вдоль одной или нескольких координат величиной, что позволяет заменять искомый параметр средним значением его в этих областях. Причем уравнения, описывающие физические процессы в указанных областях, заменяются соответствующим граничным условием в виде дифференциального уравнения в частных производных.

Температурные поля в нефтегазовых пластах в приближении сосредоточенной емкости рассмотрены в большом числе работ научных школ Башкирского, Казанского, Латвийского госуниверситетов.

Необходимо отметить работу Х.А. Ловерье [98], в которой рассмотрена термически анизотропная среда, обладающая следующими свойствами: пористый пласт, в который нагнетается вода, имеет бесконечно большую теплопроводность в вертикальном направлении и не проводит тепло посредством теплопроводности в горизонтальном направлении, породы, окружающие этот пласт, имеют конечную теплопроводность в вертикальном направлении и не проводят тепло в горизонтальном направлении. Как было показано Г.Е. Малофеевым [42] и Н.А. Авдониным [1], схема Ловерье даёт вполне удовлетворительные результаты, несмотря на упрощённые условия теплопереноса.

Большой вклад в изучение температурных полей в нефтяных пластах внёс Л.И. Рубинштейн [64]. Он разработал схемы, названные “точной схемой” и “схемой сосредоточенной ёмкости”. В “точной схеме” пласт и окружающие его породы считаются термически изотропными, имеющими теплофизические характеристики, совпадающие с характеристиками реального пласта, его кровли и подошвы. “Схема сосредоточенной ёмкости” близка к схеме Ловерье.

Считается, что пласт имеет бесконечно большую теплопроводность в вертикальном направлении, а теплопроводность пласта в направлении его простирания считается конечной, совпадающей с теплопроводностью реального пласта. Породы считаются термически изотропными с реальным значением коэффициента теплопроводности.

Теоретические изучения температурных полей при нагнетании в пласт воды проводились также М.А. Пудовкиным [63].

Вопросы захоронения радиоактивных отходов в геологических формациях и возникающие при этом экологические проблемы подробно рассматривались многими исследователями, среди которых можно выделить А.С. Белицкого, Е.И. Орлову [5], А.И. Рыбальченко, М.К. Пименова [65]. Исследованию гидродинамики и массопереноса загрязнителя посвящено большое число научных работ сотрудников ВНИИВодгео. Наиболее ценные результаты получены при проведении численных расчётов на ЭВМ по методу конечных разностей.

1.2. Основные физические процессы при фильтрации жидкости в глубоко залегающих пластах

Построение механики смесей осуществлено на основе физических законов сохранения массы, импульса и энергии. Вместе с истинной скоростью движения жидкости

в пористой среде вводится скорость фильтрации
.
(1.2.1)

Здесь m – коэффициент пористости (точнее эффективной пористости), который обуславливает фильтрацию в породе жидкости или газа и зависит от объёма пор

, через которые осуществляется фильтрация по отношению ко всему объему
образца
.

Скорость фильтрации безынерционного движения жидких фаз определяется законом Дарси

.
(1.2.3)

В большинстве встречающихся (и, что важно, “рассчитываемых”) фильтрационных процессов деформация пористого скелета, сжимаемость и связанные с этим изменения температур жидкостей являются малыми. Основными эффектами, определяющими движение системы, являются неравновесное совместное движение нескольких жидких фаз, молекулярная и конвективная диффузия растворённых в фазах компонент, поглощение твёрдой фазой или сорбция компонент, массообмен между фазами и т.д.

Ограничимся рассмотрением задачи для одного загрязнителя, который является радиоактивным или химически активным. Стоит отметить, что концентрации загрязнителя в скелете пористой среды и в насыщающем её несжимаемом растворе быстро выравниваются в силу большой поверхности соприкосновения. Как было показано в работе О.И. Коркешко [30], время протекания массообмена между жидкостью и скелетом оказывается порядка 0.1 с. Растворы, рассматриваемые в работе, считаются идеальными, что соответствует случаю одинакового взаимодействия молекул между собой независимо от того, одинаковы они или различны.

При рассмотрении температурной задачи считается, что нагнетание теплоносителя не сопровождается никакими процессами изменения фазового состояния пластовых жидкостей; теплофизические характеристики жидкости, насыщавшей пласт до начала нагнетания, совпадают с характеристиками нагнетаемой жидкости; начальная температура пласта и окружающих его пород стационарна. Полагаем, что температуры скелета пористой среды и насыщающей её несжимаемой жидкости одинаковы, так как теплообмен (наряду с массообменом) между скелетом и жидкостью осуществляется сравнительно быстро. Это допущение выполняется вследствие большой удельной поверхности пористых сред глубоко залегающих пластов (~

).

Жидкость считается несжимаемой, капиллярными силами, силой тяжести, а также температурными изменениями объёмов и тепловых свойств рассматриваемой системы пренебрегаем.

1.3. Уравнение конвективной диффузии с учетом радиоактивного распада и обмена жидкости со скелетом

Постановка задачи о распределении концентрации вредных примесей при закачке растворов в глубоко залегающие пористые пласты основана на законе сохранения массы входящих в состав примесей. Для загрязнителя, находящегося в скелете пласта, справедливо уравнение неразрывности

(1.3.1)

где

– диффузионный поток вещества в скелете,
– соответственно плотность и коэффициент диффузии радиоактивного вещества в скелете, m – пористость скелета,
– функция массообмена между скелетом и жидкостью, показывающая изменение плотности вещества в скелете за счёт диффузии молекул примеси из жидкости в скелет,
– функция источников концентрации, определяющая потери загрязнителя за счёт радиоактивного распада.

Для загрязнителя, находящегося в жидкости, уравнение неразрывности принимает вид

,
(1.3.2)

где

– диффузионный поток радиоактивного вещества в жидкости, текущей в пласте,
– соответственно плотность и коэффициент диффузии радиоактивного вещества в жидкости. Будем считать, что процесс перехода молекул примеси из жидкости в скелет и её переход из скелета в жидкость определяется соотношением химических потенциалов
. При этом, из закона сохранения следует, что потоки вещества из жидкости в скелет и обратно равны, но противоположны по знаку. Это приводит к появлению в правых частях уравнений одной и той же функции
, но с противоположным знаком. Полагая далее пористость mпостоянной, и складывая уравнения (1.3.1) и (1.3.2), получим
(1.3.3)

Равновесные концентрации примеси в скелете и в жидкости связаны между собой соотношением

(изотерма сорбции), где
– некоторая функция концентрации примеси в жидкости.